Pages

Thursday, March 31, 2022

RSGB statement concerning 40MHz in the UK


In a previous post, I outlined how several radio amateurs in the UK were in the process of applying for Innovation and Trial licences from OFCOM to carry out tests on the 40 MHz band. 

The RSGB have now outlined the position of OFCOM on the issue...

***

RSGB statement concerning 40MHz in the UK

There have been recently a number of reports of individual holders of UK Amateur licenses gaining Innovation and Trial licences from Ofcom to conduct experimental transmissions on 40MHz (8m).

Ofcom has made it very clear for several years that there was no likelihood of UK radio amateurs gaining any access to 40MHz which included NoV (Notice of Variation) to a UK amateur licence or an amateur SRP (Special Research Permit). 

The RSGB has consulted Ofcom as to the exact status of these Innovation and Trial licences. Ofcom’s reply was as follows:

“We have been approached by a couple of individuals wanting to conduct experiments in the band. Like all other research and innovation requests Ofcom receives we have put these through our Innovation and Trial licensing regime. If the coordination checks are passed, they are being issued with an Innovation and Trial licence. These are issued for up to 12 months on a non-interference, no protection and non-operational basis. 

These are not Amateur Radio Special Research Permits and licensees do not fall under the Amateur Radio licence terms and conditions. Therefore, applicants are not required to have passed an amateur exam or hold a callsign. Although we are allowing this experimentation, we would like to make it clear that we have no proposals to allow wider amateur radio access to the 40 MHz band.

Clause 9(6) of the UK amateur terms states “The Licensee may receive Messages from an overseas amateur or from an Amateur duly authorised by Ofcom on a frequency band not specified in Schedule 1 but the Licensee may only transmit on a band specified in Schedule 1 which is authorised under Clause 9(2).”

Users of 40 MHz under an Innovation and Trial (I&T) licence are not authorised under the Amateur Radio licensing regime and there is no requirement to have passed an amateur radio exam to obtain such a licence. Clause 9(6) of the Amateur licence is designed to cover additional frequencies, such as 70 MHz and 146 MHz, which are not contained in Schedule 1 of the Amateur Radio licence but Ofcom has authorised via a Notice of Variation (NoV). 

We would like to make clear that we have not duly authorised any amateur to use a frequency band not specified in Schedule 1 through this process. Reception of transmissions authorised under an I&T Licence should therefore be treated the same as those authorised under other licences that Ofcom issues such as business radio or maritime.

We would also like to make clear that I&T licences do not permit operational or commercial use. These licences are designed to support individuals and companies in carrying out research, development, testing and demonstrations of equipment. 

Therefore, the use of the 40 MHz band under this licence should be for these purposes only. The licences are granted on the basis that the user will be carrying out such research and not operating on the band in a similar way to the frequencies listed in Schedule 1 of the licence.”

Ofcom’s view is very clear. Any operation on 40MHz in the UK is not Amateur radio and therefore cross-band contacts to such stations by UK radio Amateurs operating on the bands licenced for amateur radio are not permitted.

*** RSGB Statement Ends

Just to highlight that the RSGB are just outlining the position of OFCOM so there is no point in bashing the RSGB over this.

Wednesday, March 30, 2022

21,000km long path opening on 50 MHz between Australia & the Canary Islands - 15th March 2022


At the start of March 2022, I reported on how there was some 18,000km plus openings on the 50 MHz band between New Zealand and the Canary Islands. See previous post HERE.

About a week later on the 15th of March 2022, this distance was exceeded when there was a long path opening on 50 MHz between the east coast of Australia and the Canary Islands. The distance on this occasion was an amazing 21,100 kms!

I'm a little bit late with the post as I've been busy but it's worth highlighting that it happened. There is no shortage of long distance openings on the 50 MHz band at the moment but these tend to be mostly North-South and TEP related.

It's easy to just look at the map and so what? But remember this was at 50 MHz, a VHF band and not down on the HF bands where long path openings are pretty common.


It looks as if FT8 was used by most stations for the opening. The partial screen grab above shows the contact between EA8TL on Tenerife and VK4MA near Brisbane.

Amazingly, Jorge EA8TL was using just a Hexbeam for the contact and he was beaming towards the Caribbean.


The opening wasn't confined to just VK4MA and EA8TL. These are some of the spots from the DX-Cluster.

EA8DO 50313 VK4HJ 21:55 14 Mar 22 ft8 Australia
EA8DO 50313 VK4MA 21:43 14 Mar 22 ft8 Australia
EA8DO 50313 VK4QG 21:43 14 Mar 22 ft8 Australia
EA8TL 50313 VK4MA 21:42 14 Mar 22 ft8 Australia

Propagation Mode??? ...It's probably no accident that all stations involved in the opening were no more than 25 degrees or so from the equator. Radio propagation at these latitudes reaches much higher frequencies than for those located much further north or south.

It's highly likely that a large part of the path was due to chordal mode without the signal hitting the ground.


As for how much of the signal was due to F2? Sp-E? TEP?

Just for the record, the solar flux on the day was 110.

Tuesday, March 29, 2022

History of the G9 Radio Test & Development License in the UK


In a previous post, I outlined how some radio amateurs in the UK are obtaining special permits to operate and experiment on the 40 MHz band. As part of the feedback, someone mentioned the old G9 callsigns which were a Test & Development license in the UK.

Anyone familiar with old copies of the Practical Wireless magazine will remember antenna articles and designs by Fred Judd, G2BCX. He popularised antennas like the Slim Jim for 144 MHz and he used the callsign G9BTN for much of his work.

Lewis, M3HHY put together a nice video about the history of these G9 callsigns and it's embedded below.

Sunday, March 27, 2022

Several radio amateurs in the UK obtain special 40 MHz permits

In a previous post in February of 2022, I reported on how the UK licensing authority OFCOM had refused to give NOV's (Notice of Variation) to radio amateurs to carry out tests on the 40 MHz band.

The good news is the OFCOM are allocating temporary Innovation and Research licenses.


Roger, G3XBM in the east of England can operate from the 2nd of April for 1-year with 5-watts. Roger writes... "After a very long wait OFCOM has approved my 8m TX permit that runs from April 2nd for a year.

It permits me to use 40-42MHz with digital modes (including CW) at 5W ERP max. I expect to erect a wire dipole which is directed towards Europe.

I expect to be mostly on FT8 around 40.676MHz with precise frequency done in liaison with others. What I hope is all 8m FT8 stations can be monitored with one USB dial setting, but spaced out. 5W should certainly cover Europe with Es. I shall try some local CW crossband QSOs, but hope to be on FT8 24/7."

***

John, G0JJL in the north-west of England can operate from the 1st of May 2022. John writes... "I am one of the UK Amateurs that have recently obtained a temporary 12 month licence to transmit on 40MHz. 

These licences are not Amateur Radio special permits, they are Innovation and Research licences which have nothing to do with Amateur Radio at all. In fact, anyone in the UK can apply for this type of licence whether they are a licensed Amateur or not. 

The UK regulator, Ofcom, do not issue callsigns with Innovation and Research licences, it is up to the licence holder if they wish to use one and the licence holder can use any callsign of their choice. Some UK Amateurs who obtain an Innovation and Research licence might decide to use their Amateur Radio callsigns on 40MHz and this is perfectly legal so far as Ofcom are concerned. However, using their Amateur Radio callsign on 40MHz does not mean their station is then an Amateur Radio station operating on 40MHz, it is not, it remains an Innovation and Research licence station only and this as been confirmed by Ofcom. 

My Innovation and Research licence was granted to allow research of propagation in the 8m band and my licence permits use of 40.680MHz and 40.690MHz using narrow band digital modes and CW from 1st May 2022 from two locations. The callsign to be used is GR9A.

***

Neil, G0JHC in the north-west of England has also applied for a permit and will be using the callsign GR9B. Neil is located in the same area as G0JJL.

* * *

Paul, G7PUV in the south-east of England is currently applying for a permit. Others are likely to follow.

Analysis... This is indeed welcome news as it allows more signals on the band which is great for experimentation. There's only so many times you can report a beacon on 40 MHz.

At the end of April, the Sporadic-E season will have started and it should be quite easy for the UK stations to be heard in countries with permits like Slovenia (S5) and Croatia (9A) which are around the 1200km mark.

By late May and all of June, there should be plenty of short skip Sporadic-E with distances in the region of 500-1000kms possible.

There are plenty of opportunities for radio amateurs in the UK to participate in these experiments by listening for the permit holders and working them cross band from 40 MHz to either 28 MHz or 50 MHz.

40 MHz is an excellent band for meteor scatter tests. Tropo contacts up to 200kms may be possible and aircraft scatter propagation can also be explored.

Trans-Atlantic contacts to the permit holders in the USA should be possible in May and June by multi-hop Sporadic-E. There is also the possibility of very long paths to South Africa.

Maybe in time, radio amateurs in the UK will get an allocation at 40 MHz but for now, this is a 'foot in the door'. The results of these Innovation & Research permits can be used to show a real need for a formal amateur radio allocation for this band.

Can EI stations work these special permits? ...Not to be pedantic but the answer is no. In Ireland (EI), the amateur radio license states quite clearly that we can only make contact with other radio amateurs. Making contact with a special experimental license in the USA, Canada or the UK is not the same as say Slovenia, Croatia or South Africa.

It's up to EI stations what they do formally or otherwise but I'm just clarifying the current situation.

Links...
a) Plenty of information as always on my 40 MHz page.

Friday, March 25, 2022

EI1KNH beacon on 40.013 MHz to trial different modes - April 2022


The 40 MHz / 8m band is one part of the spectrum which is very much experimental in nature be that for checking propagation or equipment.

With that in mind, the EI1KNH 8m beacon near Dublin on 40.013 MHz is currently trialing different modes. These include CW, FT8, SSTV, RTTY, MSK144, WSPR and stepped power levels.

The modes and time sequence is shown below and any reports and feedback should be reported to the beacon keeper, Tim EI4GNB.

Note that this is an experiment. It's highly likely the modes will change again in time depending on feedback and what reception tests people are carrying out.

The highlights:
*Every 10 minutes, 06-24hrs FT8 & cw (00,10,20,30,40,50mins past the hour)
*14,34,44 & 54 past the hour, 24hrs, WSPR (preceded by variable power carrier)
*Full service 6am to midnight
*Night mode midnight to 6am mutes all but WSPR & graduated power carrier
*All modes have 'rich' content, not just callsign & locator

EI1KNH schedule (Testing from March 23rd 2022)
On the hour, 06-24hrs FT8 & cw
3mins past the Hour, 06-24hrs MSK144 & cw
6mins past the Hour, 06-24hrs RTTY & cw
7mins past the hour, 3 minute break
10mins past the hour, 06-24hrs FT8 & cw
13mins past the Hour, 24hrs carrier, 0db to 20db of attenuation in steps
14mins past the Hour, 24hrs WSPR
16mins past the Hour, 06-24hrs MSK144 & cw
19mins past the Hour, 06-24hrs RTTY & cw
20mins past the hour, 06-24hrs FT8 & cw
23mins past the Hour, 06-24hrs MSK144 & cw
26mins past the hour, 06-24hrs FT8 & cw
29mins past the Hour, 1 minute break
30mins past the hour, 06-24hrs FT8 & cw
33mins past the Hour, 24hrs carrier, 0db to 20db of attenuation in steps
34mins past the Hour, 24hrs WSPR
36mins past the Hour, 06-24hrs MSK144 & cw
39mins past the Hour, 06-24hrs RTTY & cw
40mins past the hour, 06-24hrs FT8 & cw
43mins past the Hour, 24hrs carrier, 0db to 20db of attenuation in steps
44mins past the Hour, 24hrs WSPR
46mins past the Hour, 06-24hrs MSK144 & cw
49mins past the Hour, 06-24hrs RTTY & cw
50mins past the hour, 06-24hrs FT8 & cw
53mins past the Hour, 24hrs carrier, 0db to 20db of attenuation in steps
54mins past the Hour, 24hrs WSPR
56mins past the hour, 06-24hrs SSTV (M1) & cw
59mins past the hour, 1 minute break

Wednesday, March 23, 2022

Canadian Arctic Research Station VY0ERC heard on 28 MHz - 19th March 2022


Saturday 19th March 2022: I was checking my 28 MHz log for WSPR when I noticed that I had heard the Canadian Arctic Research Station VY0ERC.

What is unusual about this is that the station is located on Ellesmere Island at 80 degrees north in the Canadian Arctic and this was on 28 MHz, not one of the lower HF bands.

In the last 5 weeks, it has only been heard on 28 MHz by 3 stations in the direction of Europe.

Local   (y-m-d) TX txGrid RX rxGrid MHz W SNR drift km
2022-03-19 15:58 VY0ERC ER60tb GM4VAC IO77xm 28.126127 0.2 -25 -3 3615
2022-03-19 15:38 VY0ERC ER60tb GM4VAC IO77xm 28.126062 0.2 -18 -3 3615
2022-03-19 15:18 VY0ERC ER60tb GM4VAC IO77xm 28.126089 0.2 -18 -3 3615
2022-03-19 14:58 VY0ERC ER60tb EA8BFK IL38bo 28.126176 0.2 -3 0 6545
2022-03-19 14:38 VY0ERC ER60tb EA8BFK IL38bo 28.1261 0.2 -3 -3 6545
2022-03-19 13:58 VY0ERC ER60tb EI7GL IO51tu 28.12604 0.2 -22 -3 4134

Station details... Eureka, Ellesmere Island, Nunavut, Canada. VY0ERC is currently operating out of the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Laboratory (RidgeLab) located on top of the hill at 80 degrees 3 minutes N and 86 degrees 25 minutes W at 600 m.a.s.l. 

The WSPR station was running just 200 milliwatts which makes it even more remarkable.


There are a few things that make this reception report unusual.

1) It was on 28 MHz and it's not usual to hear signals from so far north. The solar flux on the day was only 94 and most propagation paths are much closer to the equator.

2) The distance for me was 4,134 kms which suggests perhaps it was F2 propagation? If it was due to other propagation modes closer to the E layer than multiple hops would be required.

3) No distortion. Signals going across the polar regions tend to have an auroral flutter, something that is not conducive to WSPR.

4) Why the lack of stations hearing the signal in Europe? Why only two in the UK and Ireland?

Tuesday, March 15, 2022

First contact between Croatia and South Africa on the new 40 MHz band - 13th March 2022


Back in October of 2021, I reported on the first ever contact between South Africa and Slovenia on the 40 MHz band. See post HERE.

On the 13th of March 2022, there was another 'first' 40 MHz contact when when Milan, 9A2Y in Croatia managed to complete a successful FT8 contact with Willem, ZS6WAB in South Africa.

The distance was in the region of 7,585kms and it took place at around 12:36 UTC. This would have been an hour or so after local noon and the F2 layer was likely at it's highest ionization.

Considering it was a North-South path, I suspect that F2 and TEP propagation was involved without any need for a Sporadic-E extension at either end.

The solar flux on the 13th of March was at 123 which is a lot higher than last October when it was just 78 when the first ZS-S5 contact took place.


The screenshot above from 9A2Y shows the FT8 contact. As can be seen, the signal from ZS6WAB was  -5dB in Croatia which suggests that a contact on CW would have been possible but unlikely on SSB.

Equipment: I'm not sure what 9A2Y was using but ZS6WAB uses an old ICOM IC-706 for the 8m CW beacon with a 5-element YU7EF designed Yagi so I presume that is what was used.

Antenna stack at ZS6WAB with the 40 MHz Yagi at the top

Quite a number of European stations have reported hearing the ZS6WAB beacon on 40.475 MHz over the last week or two. Considering it's located halfway between the 28 MHz and 50 MHz bands, it is now hopefully giving early warning of potential 6m openings between South Africa and Europe.

As always, if you want more information on the new 8m band then check out the links on my 40 MHz page.

Saturday, March 12, 2022

Long path opening on 50 MHz between South America and Asia - 12th March 2022


12th March 2022: There seems to have been a really good opening on the 50 MHz band at about 01:00 to 04:00 from South America to the east of Asia (Thanks to N0JK on the tip off for this).

The map above from the PSK Reporter website shows the paths as reported for PY2XB in Brazil. The site shows the shortest path between two stations but I think in reality, the contacts from Brazil to Japan & Taiwan were all via long path.


Long Path V Short Path... The map above shows the situation. For someone in the south of Brazil, Taiwan is effectively the other side of the world and there isn't that much difference between short path or long path.

I'm subject to correction on this but I think this extensive opening on 50 MHz was around 21,000kms via the long path.

The map at the start of the post shows that there was a path also from Brazil to Hawaii at 01:58 UTC. The map above also shows where the daylight was at about 03:00 UTC. It was likely that there was strong TEP to the west of South America which likely played a factor in the opening.


This chart is a point to point HF propagation forecast and shows how likely an opening is on each of the bands from PY2XB in Brazil to BV3UF in Taiwan. As you can see, the long path on 28 MHz is very good from 24:00 to 06:00.

By contrast, the short path prediction is very poor at this time. The DX spots just report stations heard but no-one seems to mention short path or long path.

Propagation Mode???... As mentioned already, TEP (Trans-Equatorial Propagation) is likely to have been involved but how much? Was it partially TEP with the rest of the path via F2 propagation? Was there greyline and chordal propagation involved across the Pacific where the sun was setting?

Some seem to be very quick to explain every long distance opening as being simply TEP but remember that we're talking about a path of 21,000kms at 50 MHz. I'd suggest that it's a lot more complex than that.

Just for reference purposes, the solar flux on the day was about 127.

Notes... This was a reasonably good opening between two areas with a lot of 6m activity. The maps and data I have presented above is just a sample of this opening but it does demonstrate the distances achieved.

Thursday, March 10, 2022

18,700km contact on 50 MHz between ZL1RS and EA8DO - 9th March 2022


A few days ago, I reported on an 18,000km+ opening on the 7th of March on the 50 MHz band between New Zealand (ZL1) and the Canary Islands (EA8). The previous post is HERE

On the 9th March 2022, there was another similar opening on 50 MHz but this time, it was only between two stations. As the map shows above, ZL1RS on the northern part of New Zealand managed to complete a contact using FT8 with EA8DO in the Canary Islands.

This is a screen shot of the FT8 contact...


It looks as if the distance was in the region of 18,694 kms which is pretty remarkable for the 50 MHz band.

The opening on this occasion was at 21:07 UTC. The previous opening from ZL1 to EA8 on the 7th was between roughly 21:48 to 23:22 UTC.

Besides the distance, there are two things that I find interesting about this contact.

1) Time... For the opening on the 7th of March, it looks as if the path from ZL to EA8 was open before or at the start of the opening from EA8 to South America.

PSK Reporter log for EA8DO

For the opening on the 9th of March, it was the same. Why is this? Normally openings follow the sun moving from East to West. Why did the main opening from the Canary Islands to South America happen after the more westerly opening to New Zealand?

Will there be more openings like this from EA8 to ZL1 and will they all be at the start of the opening to South America?

2) No opening from ZL1 to South America... In the previous opening on the 7th, I noted how none of the four ZL1 stations in New Zealand heard or were heard by anyone in South America. 

On the 9th, the same happened again. Note the map at the top of the post from the PSK Reporter website. There are no FT8 reports from any station in South America despite the fact that the path crosses over the continent.

As I mentioned in the previous post, it's almost like chordal hop with the signal going between different parts of the ionosphere without reaching the ground.

Propagation Mode?... How exactly does a signal from the Canary Islands reach what is effectively the other side of the planet on 50 MHz? Trans-Equatorial Propagation is probably responsible for part of the path from the Canaries to South America but how did the signal get across the Pacific?

Someone suggested that antipodal focusing may be a factor in the opening but it's worth noting that this is 50 MHz, not 14 MHz. It may help but it doesn't explain what happens to make the path or paths possible.

It's good that we have two openings with some similarities but like all good science experiments, we need more openings and more data. Two data points isn't exactly 5-Sigma! 😄

The PSK Reporter log for EA8DO is shown below and you can see that ZL1RS was at the start of the opening.

Wednesday, March 9, 2022

VIDEO: Beginners guide to digital voice modes (D-STAR, DMR & FUSION) ...by Tim, GW4VXE


As part of the RSGB Tonight at 8 video series, Tim GW4VXE gave an interesting presentation on digital voice modes like D-Star, DMR & Fusion. This is really aimed at beginners or anyone who is not familiar with these modes.

The video is shown below. The presentation lasts from about 06:00 to 1:09:30 and there is a Q&A session after it which lasts until 1:43:40.

Tuesday, March 8, 2022

18,000km+ opening on 50 MHz between New Zealand & the Canary Islands - 7th March 2022


Monday 7th March 2022: There was an extremely long distance opening on the 50 MHz band between the north island of New Zealand (ZL1) and the Canary Islands (EA8) and in most cases, the distances were well in excess of 18,000kms.

If you consider that the circumference of the Earth is 40,000kms then this opening was close to the border line of what is short path or long path. See EA7 below.

Looking at the reports on the PSK Reporter website, the opening from ZL1 to EA8 occurred around 22:30 UTC. What's interesting is the EA8 stations had what looks like a TEP opening to South America about an hour later but it didn't seem to coincide with the ZL1 opening.

Questions... Like many openings, this one raises more questions than it answers.

1) Was part of the path due to TEP (Trans-Equatorial Propagation)? If it coincided with the opening to South America then yes but it seems to have been before it.

2) The map above for ZL1RS in New Zealand shows the shortest paths to the stations in the log on the PSK Reporter website. Was the path to EA8 direct or slightly skewed? Was the real path not actually over South America?

3) I checked the reports for the ZL1 stations and none of them show a South American station and yet, the opening was supposed to have gone over the continent of South America. There seems to have been an opening later from the south of New Zealand (ZL3) to Central America and Mexico. Was the real EA8-ZL1 path skewed and further north?

4) Propagation mode?... I would think that a large part of the path was due to chordal mode without the signal hitting the ground.


Did the signal pass over South America by chordal hop without reaching the ground?

5) How did the signal get across the Pacific which is a feat in itself?

6) How much of the path was due to F2? Sp-E? TEP?

Answers... If we were at the peak of the solar cycle then it may not be a big deal. But we're not, we're just on the way out of solar minimum, the solar flux is just 118 and this is up at 50 MHz. 

I think at best, we can make educated guesses but I think that's all we can do. Whatever the reason for the opening, it's probably no accident that this opening occurred near the equinox and it's likely to happen again.

Reports...These are some of the reports from the PSK Reporter website...

ZL1RS...
Txmtr Rcvr Band Mode Distance Time (UTC)
ZL1RS EA8/DF4UE 6m FT8 18986 km 22:23:29
ZL1RS EA8AXT 6m FT8 18828 km 22:19:29
ZL1RS EA8RH 6m FT8 18745 km 22:35:56
ZL1RS EA8TL 6m FT8 18742 km 22:34:56
ZL1RS EA8TH 6m FT8 18694 km 23:19:26

ZL1SG...
Txmtr Rcvr Band Mode Distance Time (UTC)
ZL1SG EA8/DF4UE 6m FT8 19019 km 22:06:56
EA8AQV ZL1SG 6m FT8 18929 km 21:48:11
ZL1SG EA8AXT 6m FT8 18861 km 22:00:59
EA8AXT ZL1SG 6m FT8 18861 km 21:49:41
ZL1SG EA8RH 6m FT8 18777 km 22:33:56
EA8RH ZL1SG 6m FT8 18777 km 22:31:41
ZL1SG EA8TL 6m FT8 18774 km 22:34:59
EA8TL ZL1SG 6m FT8 18774 km 22:31:41
EA8TH ZL1SG 6m FT8 18725 km 23:17:41

ZL1RQ... Note CN9YZ in Morocco & YS1AG in El Salvador...
Txmtr Rcvr Band Mode Distance Time (UTC)
ZL1RQ CN8YZ 6m FT8 19768 km 20:52:26
ZL1RQ EA8/DF4UE 6m FT8 19019 km 22:10:56
ZL1RQ EA8AXT 6m FT8 18861 km 21:36:29
EA8RH ZL1RQ 6m FT8 18777 km 22:30:41
ZL1RQ EA8RH 6m FT8 18777 km 22:11:29
ZL1RQ EA8TL 6m FT8 18774 km 22:29:29
EA8TL ZL1RQ 6m FT8 18774 km 22:17:41
EA8TH ZL1RQ 6m FT8 18725 km 23:22:41
YS1AG ZL1RQ 6m FT8 11511 km 01:31:41

ZL1AKW...
Rcvr Band Mode Distance Time (UTC)
EA8TH 6m FT8 18318 km 23:17:26

EA5GJ reports the following... "ZL1RS receives 3 decodes from EA7HCL on 50 MHz for the long step in an intense opening this afternoon with South America, we are facing the first Pacific-Europe Long Path openings on 6 meters, in many years... #50MHz #Propagation". 
Note that none of these appeared on the PSK Reporter site.

EA7HCL is in the far south of Spain and this opening for him was actually long path. For the EA8 stations, it was short path.

These are the spots from the DX Cluster for the evening / morning. As you can see, all of the activity seems to have been via digital modes like FT8 on 50.313 MHz...

Spotter Freq. DX Time Info Country
ZL3OZ 50313.0 YS1AG 00:36 08 Mar wkng PY. -18 El Salvador
ZL3OZ 50313.0 XE1HG 00:20 08 Mar part QSO tnx. Mexico
XE1MEX 50313.0 ZL3OY 00:04 08 Mar Tnx QSO New Zealand
XE1MEX 50313.0 ZL3OZ 00:00 08 Mar Tnx QSO New Zealand
ZL3OZ 50313.0 XE1MEX 23:30 07 Mar CQ at -6 through -19 Mexico
EA8TH 50313.0 ZL1RS 23:23 07 Mar FB Signal. TU Bob New Zealand
ZL1RS 50313.0 EA8TH 23:23 07 Mar tnx qso Canary Islands
EA8RH 50313.0 ZL1RS 22:17 07 Mar tnx qso new one New Zealand
ZL1RS 50313.0 EA8RH 22:09 07 Mar tnx qso Canary Islands
ZL1RS 50313.0 EA8TL21:48 07 Mar tnx qso Canary Islands
EA8TL 50313.0 ZL1RS 21:45 07 Mar calling you ft8 New Zealand
ZL1RS 50313.0 EA8AQV 21:32 07 Mar tnx QSO Canary Islands
ZL1RS 50313.0 EA8/DF4UE 21:26 07 Mar Canary Islands
ZL1RS 50313.0 CN8YZ 21:01 07 Mar rx only, calling ZL1RQ Morocco
ZL1RS 50313.0 EA7HCL 20:18 07 Mar 3 decodes ... Spain

Wednesday, March 2, 2022

Zoom Presentation: Amateur Radio - A Life Long Technical Hobby - 10th March 2022

From Engineers Ireland: Hosted by the Electronic and Computing division in collaboration with the South Dublin Radio Club, this webinar with Adrian Connor and Jeffrey Roe will discuss ‘Amateur Radio - A Life Long Technical Hobby’. 

Amateur Radio is a rich and diverse hobby and an exciting mix of science, communications, engineering and fun. 

It can be enjoyed by all ages and a wide range of abilities. 

This presentation aims to showcase the hobby and how to get started.

Link HERE

Note that the presentation is free and open to anyone.