Friday, October 18, 2024

2024 10m QRSS Challenge: - AA7US in Arizona - 17th Oct


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 17th of October, I heard AA7US in Arizona during an F2 layer opening during the afternoon.

The QRSS signal can be seen at the top of the graphic above. I also heard AE0V who I had heard earlier this year.

QRSS is a mode where a morse code signal is sent very slowly over the space of several minutes allowing very weak signals to be displayed on a waterfall display.

G0MBA and G0PKT were probably via F2 layer backscatter to the west.


The path from my location on the south coast of Ireland to AA7US in Arizona is just over 8000kms which was probably 2-3 F2 layer hops.

John, AA7US was using 1.5-watts from a QRPGuys AFP-FSK Digital Transceiver III kit into a horizontal Hamstick dipole mounted about 5 metres above ground on a mast on the back of an RV.

In summary... That brings the QRSS tally so far for 2024 up to 24-callsigns & 10 DXCC.

1) 8th Jan 2024: VE1VDM - DXCC #1
2) 10th Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8
14) 26th Feb 2024: VE6NGK
15) 27th Feb 2024: NM5ER
16) 28th Feb 2024: VK4BAP - DXCC #9
17) 2nd Mar 2024: WA1EDJ
18) 5th Mar 2024: FR1GZ/B - DXCC #10
19) 30th Apr 2024: IK1WVQ
20) 8th May 2024: IW0HK/B
21) 14th May 2024: IZ1KXQ/B
22) 3rd Jun 2024: M0GBZ
23) 3rd Jun 2024: G0FTD
24) 17th Oct 2024: AA7US

Thursday, October 17, 2024

Opening on the 40 MHz band between Australia and Europe - 16th Oct 2024

It was interesting to see that there was a good opening on the 40 MHz (8m) band on the 16th of Oct 2024 from the north of  Australia to Europe.

The map above shows the FT8 reports from PSK Reporter and the frequency is use was 40.680 MHz, the main centre of activity for all modes on the 8m band.

Mark, VK8MS in Australia was operating under the terms of the LIPD (Low Interference Potential Devices) Class Licence.  LIPD allows Australian citizens to operate on several bands in the low VHF spectrum with the need for a licence if the power output is below certain levels.

For the frequency range of 40.660 to 41.000 MHz (340 kHz), a maximum of 1-watt ERP can be used.

I have more details about the Australian LIPD licence in this previous post... https://ei7gl.blogspot.com/2024/01/low-vhf-band-lipd-licence-in-australia.html

I have included a log of reports below...


Some of these are reception reports by the stations in Europe but FT8 reports were exchanged with EA7KBX in Spain who was running 25-watts to a 4-element beam.

I believe EA3ERE who was running 10-watts also exchanged FT8 reports with VK8MS.

In conclusion... This is a nice example of some long distance paths which are now possible at the peak of the solar cycle on the 40 MHz band. There will be many times where the maximum usable frequency will support 40 MHz propagation but 50 MHz is a little too high. Sometimes, these 40 MHz openings can give advanced warning of potential openings on 6m.

Over the next few months, we should see plenty of long distance paths like this on the 8m band.

If you want to try and you have a suitable radio, just tune to 40.680 MHz USB and set up FT8 on your computer. Leave your radio on that frequency during daylight hours and see what you can hear.

Link... For more information on the 8m band, see my 40 MHz page.

Wednesday, October 16, 2024

L-Match antenna coupler for the low VHF bands - 40 MHz to 70 MHz


Peter, VK3YE has just released a video on his YouTube channel about a very simple L-match antenna coupler for the 50 MHz band.

As Peter marks in the intro to the video... "Most HF antenna couplers have too much minimum inductance and capacitance to work up to 50 MHz. Here's one that uses just two parts. "

In the video, Peter uses a ferrite core but you could also try an air spaced inductor to get the required 0.5uH.

According to the calculator on the M0UKD website, an 11-turn coil with a diameter of 10mm and 20mm in length will give an inductance of 0.49 uH. Website HERE


This type of simple L-match will also work on the other low VHF bands. For 40 MHz, try an extra 2-3 turns and a little bit more capacitance. For higher bands like 70 MHz, try a few less turns and lower capacitance. The key is to experiment.

Many people use non-resonant antennas when they are trying to listen to the low VHF bands like 40 MHz, 50 MHz or 70 MHz. A lot of short wave listeners and radio amateurs may have antennas for the HF and short wave bands but may not have anything for listening above 30 MHz.

A simple L-match antenna coupler like this is an interesting way to get a better antenna match and improve reception.

See the video below from VK3YE...

Thursday, October 10, 2024

Video: Factors Affecting F-layer Propagation at 50 MHz - Roger Harrison, VK2ZRH

On the 9th of October 2024, Roger Harrison VK2ZRH have a presentation titled 'Factors Affecting F-layer Propagation at 50 MHz as Solay Cycle 25 peaks' to the Madison DX Club.

In the video, Roger looks at the current sunspot cycle and the potential for some F2 layer and Trans-Equatorial Propagation (TEP) paths.

The presentation is about 25 minutes in length and is shown below...

Link... See my 50 MHz page for other presentations and posts about some long distance paths on 50 MHz.

Friday, October 4, 2024

Madeira HF beacon CS3B back on air after forest fire


Back in October of 2023, I had a post on the blog about how the HF radio beacon CS3B on the Portuguese island of Madeira was destroyed in a forest wildfire on the 12th of October 2023... See HERE

After a 9-month break, the beacon returned to service on the 3rd of July 2024. The photo above shows the new ICOM IC-7200 which replaces the old one which was destroyed in the fire.

CS3B is part of the International Beacon Project which is a series of HF beacons operating on 14.100, 18.110, 21.150, 24.930 & 28.200 MHz.

New antenna

On the 4th of October, I had a listen and I could hear the beacon on all five frequencies from 20m to 10m in the space of 75-seconds. It's easy enough to try. All you need to do is set the VFO on each band to the frequencies above and the once the sequence starts, you start on 20m and go up a band every 15 seconds.

The sequence for the beacon can be found here.. https://www.ncdxf.org/beacon/


The beacon is about 2230kms from my location which is ideal for one F2-layer hop from the ionosphere. The fact we're at sunspot maximum and it's a north-south path, F2 layer propagation even on 28 MHz will support these shorter skip distances.

If you want to check the path to your location then use this site and mess about with the values... https://soundbytes.asia/proppy/p2p

Tuesday, October 1, 2024

FT8 activity nights on the VHF/UHF bands - Q4 2024


There are FT8 activity nights on the VHF & UHF bands every Wednesday evening in Europe for the 4th quarter of 2024.

The European activity evening which uses both FT8 and FT4 rotates through the 2m, 70cm, and 23cm bands each week. Activity is from 17:00 to 21:00 UTC.

This might be an opportunity not only to try FT8 on the higher bands but also just to have a listen and feed the reception reports up the the PSKReporter website.

Further details available at www.ft8activity.eu

Monday, September 30, 2024

A look at the new ICOM IC-7760 HF & 6m transceiver

At the 2024 Dayton Hamvention in the USA in May, ICOM gave away some details about a new product called the 'X-60'. I covered this in an earlier post HERE 

In late August 2024, it was finally revealed by ICOM that the new product was the IC-7760, a fully featured HF & 6m transceiver with a 200-watt output power.

As can be seen above, the radio comes in two parts... a control head and a RF deck. These are the dimensions...

RF Deck - 425 × 149 × 442 mm (16.7 × 5.9 × 17.4 in)

Control Head - 340 × 118 × 103.5 mm (13.4 × 4.6 × 4.1 in)


The radio has two receivers which allows for the monitoring of one band while tuning another. The two receivers can also be locked to each other allowing diversity reception. It's possible say to listen to one receiver with a horizontal antenna and the other receiver to a vertical antenna. You can listen with headphones and hear the received signal with one polarization in one ear and the other polarized signal in the other ear.


The rear of the Control Head has a number of connections including a RJ-45 socket to connect a LAN cable to the RF Deck. This could be a few metres or up to 100 metres. The obvious attraction here is that the RF deck could be placed at the bottom of a mast and doesn't need to be inside the house. This obviously reduces the need to run coax cables into the house.

There is also provision for an external monitor to show the displays in more detail if required.


The front of the RF Deck is pretty bland while the rear panel has a host of connections.

The unit is mains powered which eliminates the need for a high power 13.8 volt supply. There are multiple RF sockets as well as multiple other connections.


There's no doubt that it's a superb looking radio with a lot of features but what about the price?

The current guideline seems to be around the $6,000 mark. In the UK, it seems to be about £5,700. WIMO in Germany are saying €6,600.

I suspect for most, this is an eye-watering price that is just way too expensive. After all, it is at the end of the day just a HF & 6m transceiver and any good operator could work 99% of the stations with a radio costing a quarter of the price.

I'm sure there are a minority though that could justify the price for a fully featured radio with a fully rated 200-watt output.

Over the weekend, WIMO Germany released this video previewing the new radio.

Remote Operation... One thing that is not totally clear is whether remote operation is possible? 

The one obvious thought is that someone might want to say put the RF Deck in a holiday home while keeping the Control Head at home and connecting the two over the internet. Apparently this is not possible due to latency issues.

ICOM's solution is to use their Dualwatch compatible IP remote control software to control the remote radio. As the chart shows below, the IC-7760 is a supported radio.


I would assume that this has more limited functionality as compared to a direct connection from the Control Head to the RF Deck.

For more information, have a look at the WIMO video above or go to the ICOM website... https://www.icomjapan.com/lineup/products/IC-7760/

Friday, September 27, 2024

SDRplay announce new networked SDR receiver


SDRplay are well known for their range of popular SDR receivers which cover all the radio bands up to 2 GHz. They have now just announced a new SDRplay nRSP-ST model which can be networked and is intended for remote operation.

The SDRplay nRSP-ST is a 14-bit ADC wideband SDR receiver covers all frequencies from 1kHz to 2GHz, with no gaps. It can remotely monitor up to 10MHz of spectrum at a time from a choice of 3 antennas.

The release price is in the region of $500 which is about double some of their other current models. It is expected that it will be available to purchase towards the end of 2024.


Analysis... This is an interesting development from SDRplay and mirrors some of the trends with other manufacturers of HF transceivers catering for remote operation.

In the case of the new SDRplay nRSP-ST receiver, all someone would need to do is to provide power, a network connection and antennas at the remote location. The concept of remote receivers isn't new but in most cases, a remote computer/PC is required as well as a receiver. In the case of the new SDRplay model, no remote PC is required.

The new SDRplay nRSP-ST would seem to have the same radio features as the RSPdx-R2 model except that it can be connected to a network for remote control.


One particular nice feature is that it has three antenna ports which allows for dedicated antennas to be connected at the remote end. Without this, it would be a case of having just one antenna port to cover all the radio bands below 2 GHz.

It's not hard to imagine how this remote receiver might be of interest to some people. Many live in towns and cities in noisy RF environments and the thought of having a remote receiver located somewhere quiet in say a holiday home or a friends or relatives house is attractive.

This would seem to be an all in one box solution for a problem and I'd imagine people will find all kinds of uses for it.

At about €500, it's not cheap for a receiver but it's also a new release with first adopters likely to be paying the premium price.

Links...

1) Page on SDRplay site for the new remote receiver... https://www.sdrplay.com/nrspst/

2) SDRplay press release... https://www.sdrplay.com/wp-content/uploads/2024/09/nRSP-STPressReleaseSeptFinal2024.pdf

Addendum...



Thursday, September 26, 2024

6100km TEP contact on the 144 MHz band between Spain and St Helena - 25th Sept 2024


A little bit of history was made on Wednesday 25th September 2024 when EA4I in Spain and ZD7GWM on St Helena Island in the South Atlantic managed to complete a Trans-Equatorial Propagation (TEP) contact on the 144 MHz (2m) band.

This is as far as I know the very first TEP contact on the 144 MHz band between these two countries.

José, EA4I in the west of Spain was running 700 watts into an array of 4 x 17-element Yagi antennas. As far as I know, the polarization was horizontal.

Garry, ZD7GWM on St Helena had a much more modest station with just 50-watts from a Yaesu FT-897 into a Diamond X700H vertical antenna.

While many other TEP contacts are made with the Q65 mode due to the TEP spreading and distortion, this particular contact was made with the FT4 mode.


Andy, EA7KBX reports... "A new record was set tonight between EA4I Jose and ZD7GWM Garry - a small group of us have been running TEP tests from Spain to St Helena Island on 2m / 144Mhz the QSO was completed using FT4 at 6,094.22Km !! 

Jose using 4x 17 element beams and 700w while Garry was using a Diamond vertical and FT- 897 with just 50w !! Amazing contact for the record books"


Analysis... 2024 has been a pretty remarkable year for Trans-Equatorial Propagation on the 144 MHz band. For the last few years, there have been many reports of TEP openings from Argentina & Brazil in South America to the Caribbean area.

Some were claiming that it wouldn't be replicated in other parts of the world because the Geomagnetic Equator was too far north but that hasn't turned out to be the case. We've seen regular 144 MHz TEP openings this year from Namibia to Europe, the Middle East to the Indian Ocean and from Japan to Australia.

As long as both stations are roughly equidistant from the geomagnetic equator and the signal crosses the geomagnetic equator at about 90-degrees then a path is possible.


The biggest obstacle is getting someone active at either end of the TEP path. In this case, Garry, ZD7GWM is the only person active at the southern end of this circuit.

I'm sure if the antenna was upgraded to something modest like a 9-element Yagi fixed in a northerly direction then even more 2m TEP contacts with Europe should be possible.

I wonder if there are any VHF DX groups that help out DX stations with modest antennas?


I have a previous post about Garry's set up HERE

For more information about other long distance openings on the 2m band, see my 144 MHz page.

Friday, June 28, 2024

Swiss state broadcaster confirms switch off of FM service by the end of 2024


In a press release dated Thursday 27th June 2024, the Swiss Broadcasting Corporation (SBC) confirmed that it would switch off all of the FM transmitters at the end of the year.

In a statement, SBC said..."Those who listen to the radio now largely do so via digital audio broadcasting (DAB+) or the internet, the SBC said on Thursday. Fewer and fewer very high frequency (VHF-FM) receivers are still in use in Switzerland, it said. Remaining, pure FM usage is stagnating at less than 10%."

A previous survey in 2020 had put the number of people listening on FM at 13%.

SBC continues... "In addition, maintenance of FM transmitters and investment in their renewal is expensive and disproportionate, the SBC said. In light of the organisation’s tough financial situation due to declining advertising revenues and inflation, further investment in outdated broadcasting technology is no longer justifiable. DAB+ and the internet offer better quality and a larger programme selection, are more energy and cost efficient, and can provide additional information in text and images."


FM was originally expected to be switched off throughout Switzerland by the end of 2024. The government extended FM licences for the radio industry for the last time in October 2023 to the end of 2026, after which radio stations in Switzerland will no longer be able to broadcast via FM, only digitally. The Swiss regulator OFCOM announced at the time that the final extension would give the radio industry the flexibility to complete the transition process from analogue to digital radio.

Tuesday, June 4, 2024

2024 10m QRSS Challenge: - M0GBZ & G0FTD in England - 3rd June


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 3rd of June, I added M0GBZ and G0FTD to the tally during a short skip Sporadic-E opening at about 16:00 UTC. 

The map below shows the location of the stations shown in the screen grab above.


TF3HZ in Iceland is a relatively easy catch at 1576kms and I got a screengrab of his signal back in January. The stations near London in the east of England are about 560 to 650kms from my location and require the skip distance for the Sporadic-E opening to be shorter than usual.

Getting good screen captures for both M0GBZ and G0FTD is quite difficult for me. It's not really the distance as it's June and there are plenty of short skip openings on 28 MHz. The problem is that the signals from G0PKT and G0MBA are so much stronger.

This is my usual screen grab during a short skip opening...


My sound card in the PC seems to get overloaded by the signals from G0MBA and G0PKT and I get a screen of false signals. If I adjust the audio levels to a low enough level to get rid of these false signals, M0GBZ and G0FTD disappear.

What happened on the 3rd of June is that there was a very small footprint for the Sporadic-E signal.


The footprint of a Sporadic-E opening tends to be in the shape of an oval and as suggested by the image above, the footprint favoured both M0GBZ and G0FTD with G0MBA and G0PKT being at the edge of the footprint.

This meant I could get good QRSS signals from both M0GBZ and G0FTD while the signals from the G0MBA - G0PKT duo were weaker and not overloading my sound card.

What's really interesting about this is the relatively short distances between these stations. G0FTD is at the south side of the Thames Estuary while the G0MBA - G0PKT duo are at the north side, a distance of about 50 kms.

From my location on the south coast of Ireland which is about 650kms to the west, I could see how the small Sporadic-E footprint allowed me to hear stronger from one side of the Thames Estuary compared to the other side.


This is a nice example of just how small and localised Sporadic-E openings can be. You can hear big signals from a particular station and someone a short distance away hears little or nothing.

This gets even more pronounced for higher frequencies like 50 MHz, 70 MHz or even 144 MHz.

QRSS... It also shows how QRSS (slow morse code) signals allow you to 'see' the propagation moving. With modes like WSPR or FT8, you either get a decode or you don't. 

With QRSS, you can see the propagation moving in real time. Several times during short skip openings, I have seen QRSS signals disappear in the space of a minute as the Sporadic-E footprint moves.

In summary... That brings the QRSS tally so far for 2024 up to 23-callsigns & 10 DXCC.

1) 8th Jan 2024: VE1VDM - DXCC #1
2) 10th Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8
14) 26th Feb 2024: VE6NGK
15) 27th Feb 2024: NM5ER
16) 28th Feb 2024: VK4BAP - DXCC #9
17) 2nd Mar 2024: WA1EDJ
18) 5th Mar 2024: FR1GZ/B - DXCC #10
19) 30th Apr 2024: IK1WVQ
20) 8th May 2024: IW0HK/B
21) 14th May 2024: IZ1KXQ/B
22) 3rd Jun 2024: M0GBZ
23) 3rd Jun 2024: G0FTD

Thursday, May 30, 2024

Successful test of sending QRSS signals on 28 MHz...


Introduction... QRSS is a beacon mode where callsigns are sent at very slow speeds in morse code and it's a useful mode for investigating radio propagation. The signal can usually be found on the main HF bands just below the WSPR signals.

For example, the 10m WSPR frequency is 28.1246 MHz USB and the WSPR signals are in the audio range of 1400 to 1600 Hz. Using the same dial frequency, the QRSS signals are about 400 Hz lower in frequency around 1100 Hz.

This has the advantage of using programmes like WSJT-X to decode the WSPR signals while at the same time, you can see the QRSS signals with programmes like SpectrumLab which displays the audio spectrum.

Some people operate 'grabbers' which take screen grabs of the QRSS band from their receiver and these are them put up on a website. They usually update every 10 minutes.

28 MHz tests... At about 12:00 UTC on the 29th of May 2024, I noticed that there was a Sporadic-E opening between Sweden and Ireland. The image above shows how my callsign was successfully received by the SA6BSS grabber in Sweden at a distance of about 1554kms.


How to send QRSS signals... If you are already using FT8 with programmes like WSJT-X then you are all set up for sending QRSS signals. For my tests, I was just using my HF radio and a PC.

The first thing I did was to go to the PA2OHH website and using the SPACE, DOT & DASH tabs, I generated my callsign in morse code. The audio can be adjusted from 1500 to 1900 Hz. The QRSS mode can be adjusted for length as well as whether it is on/off or uses Frequency Shift Keying (FSK).


After pressing 'Start QRSS', it's just a case of waiting for the sequence to start which happens at 10-minute intervals past the hour e.g. 12:00, 12:10, 12:20 and so on. In my case, it was really as simple as holding the microphone next to the PC speaker and pressing the PTT once the QRSS sequence started.

In terms of frequencies, I used the default 1600 Hz option. I tuned the radio down about 300 Hz from the WSPR frequency to about 28.1243 MHz USB. This made sure that my transmit signal was below the WSPR band and above the other QRSS signals.


If we look at my signal above in more detail, the bright part at the start was when the audio from the PC speaker was too loud and I had to turn it down. The rest of the QRSS audio resulted in an output power of about 5-10 watts from my radio.

There is also a very obvious upward drift in the signal! My callsign was sent over the space of just over 5-minutes and in that time, my signal drifted upwards by about 10 Hz.

My HF radio is quite old and for modes like CW or SSB, 10 Hz is really nothing. If you were to listen to CW or SSB signals from my HF rig then you'd hear nothing wrong. It's just that with QRSS, tiny changes like 10Hz become very obvious.

Nearly all QRSS signals on the bands are from dedicated transmit modules which are GPS stabilised. You can see these is the top image as nice straight signals. In my case, there is probably some crystal oscillator in the transmit chain in my HF radio that is being turned on and is drifting slowly as it warms up. 

Aurora... Back on the 10th of May 2024, I tried this QRSS test as well during the big aurora.


Using the same grabber in Sweden, the signals from the SE of England are there and are of course distorted by the aurora. I'm almost certain the signal above is me and it even has that little telltale upward drift.

In hindsight, I probably should have used on/off keying rather than frequency shift keying and the signal would have been a lot more obvious. It's still pretty cool to see your own signal coming back from the auroral region.

In conclusion... What I have outlined above is basically just putting the microphone from your radio up to the speaker of a PC and checking a website to see if your signal was heard, it's really that simple. It would be nice to see others giving it a try.

Links... Here are some useful sources...

1) https://groups.io/g/qrssknights - This email group is the place to go for all things QRSS related.

2) https://www.qsl.net/pa2ohh/21htmlqrss01.htm - PA2OHH website for generating QRSS signals.

3) https://www.qsl.net/sa6bss/ - SA6BSS grabber in Sweden.

4) https://www.qsl.net/pa2ohh/grabber.htm - PA2OHH grabber in the SE of Spain.

5) https://qsl.net/g4iog/ - G4IOG grabber in SE England

6) https://www.qsl.net/g0ftd/grabber.htm - G0FTD operates a grabber from various online receivers.

7) https://qsl.net/wa5djj/ - WA5DJJ operates several grabbers from New Mexico in the United States.

8) https://swharden.com/qrss/plus/ - AJ4VD has links to a lot of grabbers

Tuesday, May 28, 2024

Trans-Atlantic opening on the FM band (87-102 MHz) - 27th May 2024


On the 27th of May 2024, a little bit of radio history was made with the very first reception of a trans-Atlantic FM radio station in mainland Europe. The map above shows the radio stations that FMDXer Mauricio Molano  in Cáceres in the west of Spain managed  to log including CHCM-FM in Marystown, Newfoundland on 88.3 MHz.

Log...

UTC QRG ITU Station, location Details, remarks Distance km kW ERP

12:06 90.20 AZR R80 Rádio, Pico da Barrosa (smg) 1674kms 0.5kw

12:15 87.70 AZR RTP Antena 3, Pico da Barrosa (RDP) (smg) 1674kms  40kw

12:50 88.30 AZR Rádio Clube de Lajes do Pico, Pico do Geraldo 1896kms 0.05kw

14:25 88.30 CAN CHCM-FM, Marystown (NL) Openline with Paddy Daly. Special log: double hop. First Canadian station received from Spain! 3985kms  27kw

As can be seen from the log, CHCM-FM was heard at 14:25 UTC and it's likely that the propagation mode was double hop Sporadic-E.



Mauricio writes... "I have managed to fulfil another of my DX challenges!: to catch an FM station from the other side of the pond!. It was this afternoon, during the opening of Es, which had started around 1200Z and brought me several stations from the Azores Islands with good signals. A couple of hours later, our colleague Larry Horlick (Coley's Point, NL) began picking up Spanish and Portuguese stations. 

In the first minutes of the opening was when I caught the CHCM-FM (Marystown) signal on 88.3 with 
VOCM programming. On 88.5 I have another signal but very weak. I assume it is CBN-1-FM CBC-R1 
Saint John's, but it will be difficult for me to identify it 100%. Both frequencies are very difficult in my 
listening place (Aldea del Cano, Cáceres) due to the presence of semi-local stations on 88.2, 88.4 
and 88.6 MHz. This year the DX season has started late here, but it has started very, very well!."



Mauricio also notes that he has two receiver/antenna systems. The first one is a three element Yagi points to the Canary Islands (south-west) attached to a RSPDuo receiver. The second one is a 4-element Yagi pointing to Newfoundland and attached to a Perseus with the FM+ converter.

In this case,  the station from Canada was actually heard on the antenna pointing to the Canary Islands!

Just to clarify, this isn't the first trans-Atlantic FM stations have been heard in Europe but all of the previous reception reports were to the UK and Ireland. This is the first time of a trans-Atlantic reception report on the Iberian Peninsula and mainland Europe. 



Larry Horlick, VO1FOG in Newfoundland... Larry is a long time FMDXer and he caught an impressive haul of FM radio stations from Portugal and Spain in the same opening. Larry has the advantage of a quieter FM band on his side of the Atlantic.


One of the major advantages of modern SDR receivers is that an opening can now be recorded and then be later reviewed afterwards to see what was heard. 

Larry's log is shown below and it's worth remembering that these are FM radio stations from the other side of the North Atlantic.


The frequencies range from 87.6 MHz to 102.4 MHz and the distances range from 3632 kms to 4136 kms.

Larry says his catch of the day was SER, Estepa, Spain on 98.3 MHz which has an ERP of just 250-watts.

In conclusion... While there have been trans-Atlantic openings on the FM band before, it is still a remarkable occurrence and worth noting. Every year, we see multi-hop Sporadic-E across the North Atlantic on the 28 MHz and 50 MHz bands and while it's of interest to those involved, it's really nothing out of the ordinary.

Band 2 signals (88-108 MHz) are different though and it's always interesting to see FM radio stations from either side of the North Atlantic reach the other side. The question always remains as to how high does an opening reach? Can it get up into the aircraft band at 118 to 135 MHz? What about 144 MHz? Spain to Newfoundland on the 2m band? Is it possible? Is anyone trying?

Links...
1) See my 88-108 MHz my 88-108 MHz page for more examples of trans-Atlantic openings
2) Mauricio has his own SWL website here... https://moladx.blogspot.com/
3) FMList website... https://www.fmlist.org/

Sunday, May 26, 2024

Video: Suppression Ferrites ...by Bruce Sparrow, N2KTV


At the recent 2024 Hamvention, Bruce Sparrow N2KTV gave a short presentation about ferrites used for suppressing RF interference.

The video can be seen below...

Tuesday, May 21, 2024

FM radio station on 91 MHz in Greenland is heard in Ireland - 19th May 2024


On the 19th of May 2024, FMDXer Paul Logan in the north-west of Ireland reported reception of a radio station in Greenland on 91.0 MHz.

Logbook 2024-05-19 
UTC QRG ITU Station, location Details Distance km kW ERP Pol
2044 91.00 GRL Kalaallit Nunaata Radioa, Niaqernaartik/KTYC (Kap Tycho Brahe) 2095 0.1 v

The radio is located on the east coast of Greenland, has an effective radiated power of just 100-watts and runs vertical polarisation. Paul logged it at 20:44 UTC.

A 52-second audio file from the reception can be heard HERE

The distance to Paul's location in Lisnaskea, Co Fermanagh is 2095kms and the propagation mode was Sporadic-E (Sp-E). While the distance is well within the maximum for a single hop of Sporadic-E, it's always interesting when a FM station in Greenland is heard in Europe.

Greenland is technically part of North America and hints hopefully at maybe some very rare trans-Atlantic signals on the FM band in the weeks ahead.

Link...

1) More examples of long distance paths on my 88-108 MHz page.

Sunday, May 19, 2024

EI6KC achieves first Satellite Worked All Zones Award (SAT WAZ) in Ireland


Congratulations to Max, EI6KC on achieving his third CQ Satellite Worked All Zones (WAZ) award. He already holds two SAT WAZ awards as SA5IKN (#40) and M0SKN (#92). His latest SAT WAZ award (#121) is also the first one in Ireland.

Friday, May 17, 2024

ICOM hint at new 60th anniversary X60 product


At the Dayton Hamvention this weekend, ICOM put on display are number of printed circuit boards from what is supposed to be the 60th Anniversary Concept Model “X60”.

ICOM-UK write... "Referred to internally as the "X60" all lips are very tightly and firmly sealed about this project and the exciting concept model behind the secrecy. Only a carefully selected handful of our very top development gurus and members of our absolute senior management in Osaka know the complete and full details about this very special project.

The full reveal will be at the Tokyo Ham Fair which will be held over the weekend of August 24th & 25th 2024. Full details on the new model, its name, its specification and its availability, plus its target price will be disclosed there."

What is it??? Well, it's not a handheld!  Considering the number of PCB's and the fact that the one in the middle and at the top has plenty of toroids and relays, it probably is some sort of flagship HF transceiver.

On the PA board PCB, there is 'PA200W' written on it which would certainly suggest a top end HF transceiver.

If it's just another expensive HF & 6m model then I doubt if the hype is worth it. If it's a 'shack in a box' and includes some VHF and UHF bands then it certainly could generate some excitement.

We'll have to wait and see.

More photos below...








Antenna Tuner Board