Showing posts with label VHF. Show all posts
Showing posts with label VHF. Show all posts

Friday, December 9, 2022

Square Kilometre Array Radio Telescope in Australia to cover 50 to 350 MHz


The Square Kilometre Array (SKA) is an international radio astronomy project with the object of scanning the cosmos from 50 Mhz to 15.4 GHz.

This project was originally conceived in 1991. The first 10 years were about developing the concepts and ideas. The second 10 was spent doing the technology development. And then the last decade was about detailed design, securing the sites, getting governments to agree to set up a treaty organisation (SKAO) and provide the funds to start.

There are two key sites. The SKA-mid array in South Africa covers 350 MHz to 15.4 GHz and it uses dish antennas. In this post, I'll focus on the SKA-low array in Western Australia which covers 50 MHz to 350 MHz.


The SKA-low array will be located at a remote site near Murchison in Western Australia. Bulldozers are expected to start working on the site in early 2023, with the completion date estimated as 2028. 

The array is described as follows... "a phased array of simple dipole antennas to cover the frequency range from 50 to 350 MHz. These will be grouped in 40 m diameter stations each containing 256 vertically oriented dual-polarisation dipole elements.". 

"Stations will be arranged with 75% located within a 2 km diameter core and the remaining stations situated on three spiral arms, extending out to a radius of 50 km."


While the array description is of 'simple dipole antennas', the 'Christmas Tree' antenna is actually a log-periodic antenna with two polarisation feeds. There seems to be a metallic grid underneath to maximise the gain upwards.


While the gain of each individual antenna is low... possibly in the region of 6dBd... it's the sheer number of antennas fed in phase with each other that gives the high gain and resolution.

The array will produce up to ~5 Tb/s (or ~ 700 GB/s) of measurement data, which is equivalent to downloading ~200 High-Definition movies in one second. This data will be transported via a dedicated fibre from the Murchison Radio-astronomy Observatory to the SKA-Low science processing centre located in Perth. 

As might be expected, all radio transmitters are banned from the area to maintain a low noise environment. The Murchison site is about 600kms to the north of the city of Perth and is very remote.


Videos... Sirio are probably better known to the radio community as the manufacturer of various types of CB antenna as well as some for the VHF amateur bands. Their antenna plant in Volta Mantovana (Italy) will produce 78,000 'Christmas tree' antennas which will go to Western Australia to form the low-frequency part of the SKA telescope.

1) The video is in Italian but YouTube does a good job of translating it...

2) This second video titled 'Making the SKA telescopes a reality: the next chapter' gives an overview of the SKA project.

It is expected that the Square Kilometre Array project will contribute to many areas of radio astronomy.

These include...
Signals emitted in the first few hundred million years after the Big Bang.
Trace the full history of hydrogen, the most abundant element in the Universe.
Detect hydrogen's presence even before great clouds of it collapsed to form the first stars.
Fast radio bursts which output the equivalent of an entire year's worth of energy from our Sun in just a fraction of a second.

Links...
1) For more information on the SKA project, go to https://www.skao.int/

Sunday, December 5, 2021

Guest Post: VHF & UHF operation... by Alan Johnson, VK3DXE

VK3DXE in Australia recently posted this article on his Facebook page and it is republished here with his kind permission to reach a wider audience. In it, he outlines what attracted him to the VHF bands.


I've been a member of a number of VHF/UHF Ham pages for a while, and keep seeing a lot of misconceptions and myths being picked up and quoted over and over by newcomers, and sadly a lot of not-so-newcomers who’ve brought their HF Game with them to the higher bands. 

I first became fascinated with VHF tropo propagation as a young kid living in the country, where we only had 2 TV channels, but occasionally we’d get the channels from the city suddenly appear when the conditions were right. You can imagine the excitement for a young kid way back then who's suddenly discovered some new TV channels! We had a neighbour up the hill who happened to be a Ham, and he explained to me how tropo worked. I was hooked, and from then on, whenever the weather forecast maps looked promising, and we got the right conditions, summer or winter, I’d start looking for the telltales that the city channels were going to pick up.

Fast forward 7 or 8 years, and I eventually got my Australian Novice license, quickly upgrading to the Advanced Call within a year when I was about 15 or 16. We were near the top of the sunspot cycle at the time, so I went nuts on HF for the next few years. But as the sunspots waned, I was drawn to the higher bands…..

As a youngster it was sometimes tough putting up a decent 2m yagi, but I always found a way of getting something in the air, and making the most of what I had available, even when living in rental housing. I just had to be creative, and sometimes a bit cheeky. The good thing about a 2m yagi though, was that even if anybody noticed it, they'd just figure it was a TV antenna.....  

You can build a small yagi like this in an afternoon with some simple tools.

I learned about aircraft enhancement in the days before we had all the funky tools we have today, before the widespread coming of the Internet. We managed to regularly make 2m SSB contacts of up to 700km (400+ miles) with smallish yagis and relatively low power - one path of 740km was quite good even with my portable station, with just a little 4 element yagi and Yaesu FT-290R II running only 2.5 watts!  

Living in inner city urban areas, I really began to appreciate low noise antenna designs (DL6WU & K1FO were the early leaders) and radio frontends that didn't collapse in the presence of strong out of band signals. I learned about GaAsFET LNAs (Low Noise Amplifiers, or preamps) too, and the importance of what was in front of the radio on RX. You have to think of your station as a system.

In the early 1990’s the Bible of VHF+ was published. The VHF/UHF DX Book very quickly became the must-have tome in every serious VHFer’s library. Although some of the chapters are now a bit dated, especially those relating to equipment, I strongly suggest everybody with even a fleeting interest in the higher bands downloads a copy and reads it. Hopefully it’ll help to undo some of the myths about VHF+ that have persisted in the hobby for far too long, things like the belief that troppo is only a summertime thing, and that troppo is the only worthwhile propagation mode on VHF+. Download it here: http://www.trpub.net/assets/applets/VHF-UHF_DX_Book.pdf

As the Internet came along and people developed all sorts of new tools, and we learnt about Forums, email reflectors, and then FaceBook pages, the opportunities to learn and collaborate grew amazingly.

Then the WSJT suite of software changed things overnight. All of a sudden, the little guys running just 100w to a 10 element yagi could successfully work stations on the other side of the world on 2m and above via EME, or Earth-Moon-Earth. I worked a dozen countries with just a single yagi and less than 200w at the antenna. 

Just last weekend, I was listening to HB9Q in Switzerland on 23cm for hours here in my /P shack while we're living in temporary accommodation, with a beautiful steady signal, often quite audible in the speaker, all on a tiny 60cm x 90cm gridpack antenna. 


Eventually, once I get my 2.4m dish in the air and find a suitable amplifier, I hope to be able to work him on 23cm SSB at home.... JT65 and Q65 will be an absolute walk in the park.

Lots of signals on 23cm with the gridpack.

In Australia, where we don’t have the population of Europe or North America, the Ham fraternity have embraced WSPR on 2m, and have demonstrated VHF paths of sometimes thousands of kilometres that no amount of listening to white noise for beacons or a coincidentally-timed CQ would find with the naked ear. Those paths are now being exploited regularly on digital modes, with people moving to SSB when conditions become strong enough. I've been around the hobby for a long time, but so too have the "old farts", some of whom vociferously decry the use of digital modes, but our experience here in Australia has really demonstrated how digital modes can be exploited to help get those SSB contacts that very probably would never have taken place otherwise. WSPR has been so successful that there are now WSPR beacons on Hawaii (often heard on West Coast USA), and in New Zealand, with a fantastic signal into East Coast Australia during the summer tropo season.

A little 4 element Cushcraft yagi. Even this is enough to decode some of the Big Guns off the Moon. I had many WSPR 2-ways with this one, out to 700km with Aircraft Enhancement

Next time you're asked by anybody (PARTICULARLY CHILDREN AND YOUNG PEOPLE) about the hobby, instead of trying to excite them with boring stories of talking on HF or FM repeaters, which they tend to equate with the equivalent of dialing random numbers on their cellphone to talk to old farts with bad combover hairstyles about their hemorrhoids, try telling them about stuff like all the space comms stuff we have access to, and can actively participate in, like using the repeater on the ISS, and all the other satellites we have access to. Tell them about Moonbounce, and how you can actually demonstrate the speed of light in action - you know exactly when the station on the other end has stopped transmitting, but can still see and hear his signal coming back at you for those additional 2 or 3 seconds it takes to travel all the way to the Moon and back. THAT gets young people more excited than listening to old farts! Try talking to them about meteor scatter, and how the military has used it for communication systems to counter the effects of comms satellites being wiped out in a conflict, or a dirty big EMP bomb wiping out HF. Tell them about aircraft enhancement, which is really bistatic radar, and how some clever dude worked out a way of using it to detect stealth aircraft by using commercial broadcasters behind enemy lines to illuminate the target. Tell them about all the really funky atmospheric and weather science they can learn just by playing with weak signals on VHF+. Tell them about the funky networking knowledge they can gain from modes like D-Star, IRLP, Echolink, etc. 

The /P shack while I'm away from home

Anyways, I've written this piece in response to a recent influx of newcomers and not-so-newcomers to the higher bands, possibly on the back of purchasing themselves a brand new IC-9700. I fully appreciate that everybody starts their learning journey from different places and has different interests, but some of the myths and misunderstandings I see are staggering. Unfortunately, so much of the Ham narrative has become very HF-centric, and that mindset often pervades discussions, and the marketing of the hobby, so this is just my little bit to try to counter some of that.  Remember to download the VHF/UHF DX Book from the link above, and jump onto some of the more technical pages and start learning. 

I'll be doing a bit of a write up soon on the importance of frequency accuracy and STABILITY on VHF+. Watch this space.

Enjoy!

de VK3DXE

Tuesday, November 23, 2021

FM radio station in Colombia on 93.1 MHz heard in Chile via TEP opening - 21st Nov 2021


21st November 2021: Back in October, I had intended to publish a post about reception of a FM radio station on 93.1 MHz in Columbia by Alejandro, CE3VRT in Santiago, Chile. The distance was 5000kms and the propagation mode was TEP - Trans-Equatorial Propagation.

I was so busy, I forgot to publish it and it remained as a draft! The post is now shown below for the 20th of October 2021. 

What reminded me of this was that CE3VRT heard the same radio station again on 93.1 MHz but this time the TEP signals were so strong, he was able to hear them with just the telescopic whip on his TecSun PL398.

Back in October, Alejandro was using a log periodic directional antenna outdoors on a mast to hear the signals but to hear FM radio signals on 93.1 MHz on the VHF FM band from 5000kms away with just a telescopic whip is really amazing.


20th October 2021:  Recepción FM DX via TEP (muy fuerte) "La Mega" 93.1Mhz Colombia, desde Stgo, Chile. Reception of 'La Mega' radio station in Colombia on 93.1 MHz by CE3VRT in Chile

Propagation mode: TEP
Distance: Approx 5000kms

"TEP opening (trans-equatorial propagation) very strong and somewhat short. The station tuned is "La Mega" from Barranquilla, Colombia, reception in the southern zone of Santiago de Chile (~ 5000km) using an Airspy HF + dual port and a logarithmic directional antenna for TV / FM."

Reception on Wednesday, October 20, starting at 21:30 PM local time (Oct 21 - 00:30 UTC)

Tuesday, June 22, 2021

FM radio station on 90.7 MHz near Quebec is heard across the Atlantic in Ireland - 21st June 2021


21st June 2021: This was a remarkable day for VHF propagation with a very rare trans-Atlantic opening on the 88-108 MHz FM band.

As outlined in a previous post, Paul Logan in the north of Ireland managed to hear a radio station from Greenland on 88.5 MHz from roughly 13:00 to 14:00 UTC on the 21st of June.

Near the end of this opening, Paul also managed to hear a radio station near Quebec in Canada, a distance of approximately 4,270 kms !

The radio station in question was the 100 kilowatt transmitter of CBRX-FM-3 ICI MUSIQUE which is located at Riviére-du-Loup just to the east of Quebec City in Canada.

A short audio clip from Paul is embedded below...

This second clip which is very noisy is of weak music and a woman speaking in French.

Paul was able to listen later to the podcast version of the show online and it matches what he heard on the radio.

Additional info: Paul Logan near Enniskillen in the north of Ireland is an avid DX-er and has logged hundreds of radio stations on the 88-108 MHz FM band over a period of 20+ years. For the reception, Paul was using a ELAD FDM S2 SDR receiver with a Band 2 9-element Yagi 8m above ground level.


Analysis: With the opening to Greenland and now the 4270 km opening to Quebec, it looks as if this was a very rare Band 2 double hop Sporadic-E opening across the North Atlantic. 

While it it quite common for signals on say the 50 MHz band to cross the North Atlantic, the maximum usable frequency rarely reaches as high as the 88-108 MHz FM broadcast band.

Paul Logan has logged more of these trans-Atlantic Band 2 VHF openings than anyone else and this was only his 7th opening to North America in 20 plus years of listening.

As of 2021, not one single person in North America has heard a Band 2 radio station from Europe. Why?

Thursday, May 20, 2021

3980km path opens up between Sweden & the Canary Islands on 144 MHz - 19th May 2021

During the Sporadic-E opening on 144 MHz on the 19th of May, many stations in western Europe made contacts in the region of 1200 to 2300kms... a pretty standard distance for one hop Sporadic-E.

One path that stood out however was that between SM6VTZ in Sweden and EA8CXN in the Canary Islands.


Although a full contact wasn't completed on this occasion, it was still a remarkable distance at approximately 3980 kms. This is the screen from SM6VTZ showing the attempted FT8 contact...


As you can see, the signal was quite weak at -18dB which is at a level below what is audible to the human ear.

Analysis: How did this happen? During the Sporadic-E opening, Chris SM6VTZ managed to work several stations in the north-west of Spain at a distance of about 2300kms. This is close to the maximum distance for one-hop Sporadic-E.


10:36 EB1B IN73DM FT8 
10:41 EA1NL IN52PJ FT8
10;44 EA8CXN IL18SK FT8 lost in QSB, 3978km
11:07 EB1DJ IN52MO SSB
11:56 EA1M IN53TI SSB
12:05 EB1A IN53TF SSB

It's very likely that the Sporadic-E signal then coupled into a tropo duct for the rest of the journey to the Canary Islands.


As the prediction mapt from F5LEN above shows, there was some good tropo from EA8CXN on the island of Tenerife to the north-west coast of Spain, a distance of about 1400 kms.

A similar combined Sporadic-E / Tropo ducting path was seen back in August of 2020 when there was an opening from the Canary Islands to Denmark, a distance of 3710kms. See previous post.

Just one observation / question. This area of ducting often occurs off the west coast of Africa and Portugal. If a combined Sporadic-E & Tropo signal can get from Sweden to the Canary Islands (3980kms), then why can't a combined Sporadic-E & Tropo signal get across the North Atlantic from Newfoundland to the north-west of Spain (~3500kms)???

Some more examples of long distance 144 MHz signals can be found on my 144 MHz page.

Monday, May 17, 2021

New 40 MHz propagation beacon in the West of Ireland - EI1CAH


17th May 2021: There is now a new 8-metre propagation beacon in the west of Ireland using the callsign EI1CAH and it is operating on 40.016 MHz. The locator square is IO53CK.

This new beacon is designed to compliment the existing EI1KNH beacon which is situated near the east coast of Ireland. While EI1KNH has a superb take off the East, it is blocked by mountains to the West. By contrast, the new EI1CAH beacon has a good take off to the West and is poor to the East.

The EI1CAH beacon runs PI4 every second minute as well as CW. Its power is approximately 25 watts and the antenna is a horizontal dipole running roughly NW/SE.

The beacon keepers are using a QRPLabs Ultimate 3 (previously used on EI0SIX) to generate the 40 MHz signal and it has a matching internal QRPLabs 6m low pass filter which was modified to cut in closer to the 8-metre band.

They are using a NXP MRF101 based power amplifier to generate the required output power.

Analysis: This new 8-metre beacon is an excellent addition to the European suite of 40 MHz beacons and will be very useful in exploring Sporadic-E and F2 propagation paths across the Atlantic.

Site Profile: The graphic below shows the elevation profile for the EI1CAH beacon site.


There are some serious hills to the East which will block off a lot of low angle propagation paths. A typical Sporadic-E signal may be down around 5 degrees which as the image shows will be blocked by the local hills.

This is the likely maximum range due to one hop Sporadic-E...


As you can see, under short skip Sp-E conditions, reception of this beacon may be possible in say the SE of England, Belgium, Netherlands, N France and the fast west of Germany. As the antenna is running NW-SE, the signal towards Spain will be poor.

What is key however is the low elevation to the West ...towards South America, the Caribbean and North America.


Under multi-hop Sporadic conditions, this 8-metre beacon will be heard across the Atlantic and the most likely people to hear it are those out around the 4000km mark in Nova Scotia and Maine. There is also the potential that it will be heard anywhere in the eastern half of the USA.

Likewise, it will reach the Caribbean at times and will certainly make it down to Brazil and Argentina.

Solar Maximum: Around the time of the Solar Maximum, there should be some East-West openings and this 8-metre beacon could be heard anywhere in the Americas.

Value of a 40 MHz beacon: The real value of this beacon is that there is a huge 20 MHz gap between the 28 MHz and 50 MHz bands. As the maximum usable frequency (MUF) for Sporadic-E and F2 propagation rises, it can be very difficult to know where exactly or how high it is.

By having a beacon at 40 MHz, it will allow serious 50 MHz stations to monitor the rising MUF and be ready for any potential 6-metre opening. 

I think this beacon will be of real value as we get close to solar maximum and North American stations are checking for a 6-metre opening to Europe.

Thanks to Tim, EI4GNB and Tony, EI7BMB in getting this beacon up and running.

For more information on the 40 MHz band, see the information on my 40 MHz page... https://ei7gl.blogspot.com/p/40-mhz.html

Tuesday, April 27, 2021

Upgrade to the Irish 70 MHz beacon EI4RF - Apr 2021


The Irish 4m beacon EI4RF has now been upgraded and is now transmitting on 70.013 MHz. It was previously operating on 70.130 MHz due to the limits of the older Irish 4m band. 

It is still located to the south of Dublin in the locator square IO63VE.

It is running 25-watts into a 3-element Yagi pointing east (90 degrees). The map above shows the beam heading with the -3dB (half power) headings as well.

EI4RF: 3-element Yagi for 70 MHz

The signal for the beacon comes from a GPS locked RFzero board and it uses the following format per minute: 3 x 15 second FT8 transmission and 1 x CW transmission.


Analysis:
This new upgraded EI4RF beacon should prove to be a valuable propagation tool for the 70 MHz (4m) band especially as it is running 25-watts into a directional antenna with about 6dB (x4 time power) of gain. 

Anyone in England up to a distance of 500kms with a very modest station on 4m should be easily able to hear the beacon via tropo. Under enhanced tropo conditions, well equipped stations in the Netherlands at about 700-800kms might hear it.

As regards Sporadic-E, it should be very strong in the range of 1500 to 2200kms when the band is open... e.g. Poland, Baltic states, Croatia & Slovenia. During stronger openings when the MUF is higher, shorter distances down to 1000 kms may be possible... e.g. Germany.

Reception outside the -3dB points will be possible but obviously the further away from -3dB points you get, the weaker the signal.

EI4RF Site Profile: I have done up a site profile for the EI4RF site and it is shown below with the outline of the horizon.


I have included the 0 degree and 1 degree lines and I have coloured in the sea in light Blue to make it clearer.

As you can see, the beacon is on an elevated site and is looking down at the Irish Sea. Some of the mountains in the NW of Wales (90 deg) at a distance of 150kms or so are also visible. The plot clearly shows that there are no local obstructions between the -3dB points which is very good.

Outside of the main beam heading to the East, the path to the rest of Ireland is largely blocked by local hills and mountains. In the direction of Waterford (210 deg), the horizon has an elevation of about 3 degrees. In the direction of Cork (227 deg), the horizon rises to about 5 degrees. To the west, the horizon is over 7 degrees. It's highly unlikely that this beacon would be heard across the North Atlantic if there was ever some double hop Sporadic-E.

In conclusion: This beacon with its 25 watts should be easily heard in England via tropo and in eastern Europe via Sporadic-E. The inclusion of the FT8 digital mode is a welcome touch as it allows people to hear signals buried in the noise and there is already a lot of people using that mode. Any reception reports can be automatically uploaded to the PSK Reporter website to alert others of any opening.

Thanks to Tony, EI7BMB and Tim, EI4GNB who got this upgraded 4m beacon up and running.

* * * 

Other site developments: From Tim, EI4GNB...

EI0SIX had a mild tune-up, as one of the pair of antennas had gone a bit droopy, now the SWR and bandwidth are excellent. It remains 40w to a pair of loops phased.

EI1KNH on 8m has had it's monopole antenna moved to the top of the 4m mast, away from the FDP for 5m, and now has a much healthier looking lot on my VNA. No more interaction with 5m. It's happy on 40w from the NXP PA.

EI1KNH on 5m now runs FT8 for 3 periods of 15 seconds, then runs a slow CW ID and a long carrier - previously it had been looping FT8 every 15 seconds. It's PSU was toast, and was causing hash all over HF to the remote stn there, so it's temp on the same PSU as EI0SIX. No change to the chain, 25w to a folded dipole.

Friday, April 23, 2021

Guest Post: Some thoughts on VHF paths across the South Atlantic ...by Dave, N7BHC

Dave N7BHC (Also PJ4VHF & ZR2BI) left a comment on a post recently about VHF propagation in the South Atlantic. There was so much interesting info in it that I have put it up here as a guest post. There is plenty in there as food for thought.

* * *


Back in 2007-2010, I was trying to drum up trans-Atlantic tropo ducting interest. I am very pleased to see more progress now. A contact from ZD7 (St.Helena Is) to PY (Brazil) on 144 MHz (2m) is 100% probable


I introduced John Turner at Saint FM, the local FM radio station, back in 2008-2010 to tropo ducting on the FM broadcasting band. He successfully logged many Angolan, Namibian, and Cape Town FM stations. One December he emailed that he was unsuccessful identifying an Angolan FM radio station as he had interference from a Brazilian station on the same frequency. This was using just a car radio with its whip antenna. 

Back in March 2008, ZD8I on Ascension Island reported that they sometimes heard Cape Town Marine Radio (ZSC) on 156.8 MHz FM. That is an omni antenna to an omni antenna on FM at a range of 4400 km. 


ZD8S on Ascension Island reports listening to Brazilian FM stations with indoor portable radios. 

Since then, I spent the next ten years on Bonaire as PJ4VHF. My biggest tropo ducting success across the North Atlantic was the initial reception of D4C/b on the Cape Verde Islands at a range of 4,694km. I strongly encourage any stations on ZD7 and ZD8 to be active on both 2m and 70cm

I have been studying trans-ocenic ducting for many decades (I started out as ZR2BI in East London). The South Atlantic may be the BEST location worldwide for long-haul ducting, both for range and how often the openings occur. FM vertical polarization works well bit SSB or FT8 on horizontal is even better.

Maybe someday we may be allowed to and able to travel again, and I can afford to visit ZD7 in person. Until then, all I can do is strongly encourage others. 

73, Dave N7BHC/PJ4VHF/ZR2BI dpedersen AT drasticom DOT com

Friday, April 16, 2021

VO1FN 144 MHz Trans-Atlantic Project mentioned on Radio DARC broadcast on the Short Wave Band


Radio DARC is a short program broadcast on 6.070 KHz with 100 KW on Sundays at 09:00 UTC (11:00 CEST) about amateur radio with a lot of music.

On Sunday the 18th of April 2021, the VO1FN Trans-Atlantic project on 144 MHz gets a mention in their news items at about 10 minutes in.

While the program is broadcast in German, it does raise awareness about the 'VO1FN Trans-Atlantik Projekt' among a much wider community.

Radio DARC broadcast locally via FM and DAB in Germany, Austria and Italy. It is also broadcast on 3955 kHz and 9670 kHz for an audience outside of Germany. If you hear the broadcast then you can send them a reception report.

You can find out more about Radio DARC and their transmission times here... https://www.darc.de/nachrichten/radio-darc/

More information about the VO1FN Trans-Atlantic Project can be found in this previous blog post.

Thanks to Joerg, DM4DL for the above information.

Thursday, April 8, 2021

Guest Post: Propagation Monitoring 2m Band with AIS Data ...by Jörg, DM4DL

Foreword... AIS (Automatic Identification System) is used by ships to identify their location by sending out a signal at 162 MHz which is pocked up by other ships and shore stations. There is a growing community of enthusiasts near coasts around the world who monitor these signals and feed the decoded signals into websites that then display the positions. AIS signals which are a few watts in power act like beacons and can be used by radio amateurs to show if there is any tropospheric enhancement on the VHF bands... de John, EI7GL


Propagation Monitoring 2m Band with AIS Data from Vesseltracker.com ...by Jörg, DM4DL

I'm trying to use the ships' transponders on 162 MHz +/-25 kHz as beacons for the 144 MHz 2m band. My first AIS receiving antenna is on the island of Neuwerk, 15 km from Cuxhaven. 

For 5 years I was able to inspire some HAM radio operators and meanwhile a partnership between the company Vesseltracker and Gabriel, EA6VQ, the operator of DXMaps is planned.

As a test, the Vesseltracker data of some AIS-RX are already being forwarded to DXMaps.

Please check whether you would like to participate in the community with your location?

Example of enhanced VHF conditions in the eastern Mediterranean

The equipment is provided free of charge by Vesseltracker, you can read more here: www.vesseltracker.com/en/community

You are invited to contact David Hewson, the antenna manager in your native language via the Vesseltracker community page, David is from Canada.

Now we are waiting for good conditions, which can be seen in DXMaps under AIS. 

VY73 Jörg DM4DL

Example of enhanced VHF conditions

Friday, March 26, 2021

How to check your horizon for HF & VHF propagation


If you're interested in the upper HF bands or any of the VHF and UHF bands then your horizon is all important. On bands like 144 MHz and above, the vast majority of signals are coming in from the horizon and just above it.

On bands like 28 MHz, 50 MHz & 70 MHz, the signals may be coming in at a slightly higher angle with Sporadic-E but they are still very close to the horizon. Whether you're operating from home or thinking or going portable then knowing your horizon can help explain what's going on.

First off, the website for checking your horizon is https://www.heywhatsthat.com/

In this post, we'll look at how to use it and some tips on getting them most out of it. To help explain it, I am going to do a profile of Paul Logan's location in Lisnaskea in Co.Fermanagh, Ireland. Paul is an avid listener to the Band 2 FM band from 88 to 108 MHz and logs hundreds of radio stations from all over Europe every year.

Getting started...


After going to the HeyWhatsThat site, click on the 'New panorama', zoom in to find your own location on the map and then click on it. 

I have done this in the example above for Paul's location and them zoomed back out. On the left side of the screen, your latitude and longitude will be automatically filled in after you click on the map. You can also select the height above ground so I selected 8-metres which is the height of Paul's antenna.

Note that the site uses the general topography to calculate your horizon, it doesn't take buildings or trees into account.

Also make sure to select 'Metric' at the bottom of the screen to use proper measurements.

Then click 'Submit request'.

Using the results...

After a short while, a map is generated. I clicked on the 'Visibility cloak' to show the areas that are visible from Paul's location. The Red triangles are distant peaks and I clicked on 'Contours' to highlight the topography.

This is that the horizon looks like for Paul...


I have exaggerated the vertical scale and added some numbers to make it clearer.

There is a large hill with an elevation of about 5 degrees to the north-east of Paul's location (45 deg bearing) and this is clearly shown on the image above. This would have a major impact on all signals at 144 MHz and above. As Paul notes himself, he finds it very difficult to get distant stations on Band 2 in that direction. 

That hill would also impact on all long distance single hop Sporadic-E coming from that direction on all bands from 28 MHz to 144 MHz. Short skip arriving at a higher angles on say 28 MHz or 50 MHz would probably clear the hill.

Due east at 90 degrees, there is an interesting gap which might might allow some distant Band 2 tropo or Sporadic-E through.

From 100 to 140 is another impediment to low angle signals but it gets much better after 150 degrees or so. Paul has a very good take off at about 190 degrees towards the Canary Islands and even those distant line of sight peaks around 270 degrees are so low that there are unlikely to be much of a problem. As a result, his location will be wide open to say the USA on 28 MHz once the sunspot numbers increase.

Example 1: Poor tropo path to Scotland.

In this example, I have shown what the path is like to Scotland and how the hill is in the way. If you are trying this from your location, then just click on any location of interest and the site will show you the path and where it is on your horizon.

Example 2: Good tropo  path to Spain

As can be seen from the horizon profile, Paul has a good path to the south and this can allow him to gain access to the marine duct that sometimes occurs between Ireland and Spain. The distance shown is about 1200kms which is really good for Band 2 tropo.

Example 3: Sporadic-E footprints...


Using the 'Up in the air' button, I was able to simulate what the limit for one hop Sporadic-E from Paul's location might be. One the left above is the approximate range if Paul had a completely flat horizon. The one on the right is the reality.

For Italy, the local hill restricts signals further south than Rome.

For Poland, signals from the east of the country should be easy to hear except the local hill makes things more difficult. Belarus and the west of Ukraine are also more difficult. Notice that that little gap at 90 degrees is reflected in the Sporadic-E footprint.

For the Baltic states and Finland, they should be well within Sporadic-E range but again, the local hill makes things difficult.

It's possible in many cases that some local tropo conditions will extend the footprint further east but overall, the local hills make hearing these areas more challenging.

Example 4: F2 propagation...


As the sunspots increase, there will be weak F2 openings on 28 MHz. Towards the west, Paul should have no problems reaching Newfoundland and Nova Scotia in Canada. With the help of a more southerly second hop, he is well placed to hear signals from well into the USA.

Towards the eastern Mediterranean, the local hill will block some of those signals when the band is just open. Ironically, it may actually be easier to hear signals further away in places like the Arabian peninsula once there is a second hop.

'Up in the air' Values... 


For your own propagation footprint maps, try 360000 for Sporadic-E and 1300000 for F2.

Example 5: Line of sight paths...


The HeyWhatsThat site can also be used to examine line of site paths. The map above shows the path from Paul's location to Clermont Carn in Co.Louth, about 75kms away. This is a major transmitter site for Irish radio stations.

Let's say for example, Paul wanted to get a line of sight path for a contact on the microwave bands. The profile below shows the local hill in the way but there is a location 7kms away that is line of sight to Clermont Carn.


It's not hard to imagine how it might be used for finding suitable paths on the microwave bands or even if someone was just curious if a distant mountain was visible or not.

Other uses... Here's a few...

Portable operation, DX-peditions, Summits on the Air (SOTA) activations, contesting ... are there obstructions in the way? Is your 'perfect' contest location blocked at a low angle on the upper HF bands say to the USA?

In summary... This is a very useful utility to have and the more you use it, you tend to think of other uses.

For the bands like 28 MHz and 50 MHz, short skip can hide the shortcomings you may have in a certain directions. Your horizon profile should make you aware of these and you're looking for no more than 2 degrees.

For the higher bands like 70 MHz, 88 to 108 MHz, 144 MHz and above, tropo becomes a more important propagation mode. This time, you're looking for a very low horizon and the lower the better.

There's a very good reason why people put antennas up as high as possible on the VHF and UHF bands.

Thursday, March 18, 2021

The DL7APV 8 x 9 Element Antenna Array for Band 2 (88-108 MHz)

One of my interests is listening for long distance radio signals on the 88 to 108 MHz band which is  otherwise known as Band 2 or as simply the FM band to the general public. I recently came across this impressive antenna array from Bernd, DL7APV in Germany.


He is using an array of eight bayed 9-element Band 2 beams mounted on a rotatable base which is normally used for moon bounce on the higher VHF & UHF bands.


According to DL7APV, the antenna array has an impressive gain about about 14 to 15 dBd with a beam width of about 10 degrees.

The individual antennas are the 9-element 3H-FM-9M19 - Modell 2019 from Antennenland which retail at €109 each.


Despite the fact that the antenna has 9 elements, a lot of them are used to make the antenna broadband. It seems to have the same gain as say a narrowband 4 to 5-element Yagi.


For more details on this array, how it goes together and what was heard, check out DL7APV's 3-metre page on his website.