Showing posts sorted by relevance for query qrss.. Sort by date Show all posts
Showing posts sorted by relevance for query qrss.. Sort by date Show all posts

Thursday, May 30, 2024

Successful test of sending QRSS signals on 28 MHz...


Introduction... QRSS is a beacon mode where callsigns are sent at very slow speeds in morse code and it's a useful mode for investigating radio propagation. The signal can usually be found on the main HF bands just below the WSPR signals.

For example, the 10m WSPR frequency is 28.1246 MHz USB and the WSPR signals are in the audio range of 1400 to 1600 Hz. Using the same dial frequency, the QRSS signals are about 400 Hz lower in frequency around 1100 Hz.

This has the advantage of using programmes like WSJT-X to decode the WSPR signals while at the same time, you can see the QRSS signals with programmes like SpectrumLab which displays the audio spectrum.

Some people operate 'grabbers' which take screen grabs of the QRSS band from their receiver and these are them put up on a website. They usually update every 10 minutes.

28 MHz tests... At about 12:00 UTC on the 29th of May 2024, I noticed that there was a Sporadic-E opening between Sweden and Ireland. The image above shows how my callsign was successfully received by the SA6BSS grabber in Sweden at a distance of about 1554kms.


How to send QRSS signals... If you are already using FT8 with programmes like WSJT-X then you are all set up for sending QRSS signals. For my tests, I was just using my HF radio and a PC.

The first thing I did was to go to the PA2OHH website and using the SPACE, DOT & DASH tabs, I generated my callsign in morse code. The audio can be adjusted from 1500 to 1900 Hz. The QRSS mode can be adjusted for length as well as whether it is on/off or uses Frequency Shift Keying (FSK).


After pressing 'Start QRSS', it's just a case of waiting for the sequence to start which happens at 10-minute intervals past the hour e.g. 12:00, 12:10, 12:20 and so on. In my case, it was really as simple as holding the microphone next to the PC speaker and pressing the PTT once the QRSS sequence started.

In terms of frequencies, I used the default 1600 Hz option. I tuned the radio down about 300 Hz from the WSPR frequency to about 28.1243 MHz USB. This made sure that my transmit signal was below the WSPR band and above the other QRSS signals.


If we look at my signal above in more detail, the bright part at the start was when the audio from the PC speaker was too loud and I had to turn it down. The rest of the QRSS audio resulted in an output power of about 5-10 watts from my radio.

There is also a very obvious upward drift in the signal! My callsign was sent over the space of just over 5-minutes and in that time, my signal drifted upwards by about 10 Hz.

My HF radio is quite old and for modes like CW or SSB, 10 Hz is really nothing. If you were to listen to CW or SSB signals from my HF rig then you'd hear nothing wrong. It's just that with QRSS, tiny changes like 10Hz become very obvious.

Nearly all QRSS signals on the bands are from dedicated transmit modules which are GPS stabilised. You can see these is the top image as nice straight signals. In my case, there is probably some crystal oscillator in the transmit chain in my HF radio that is being turned on and is drifting slowly as it warms up. 

Aurora... Back on the 10th of May 2024, I tried this QRSS test as well during the big aurora.


Using the same grabber in Sweden, the signals from the SE of England are there and are of course distorted by the aurora. I'm almost certain the signal above is me and it even has that little telltale upward drift.

In hindsight, I probably should have used on/off keying rather than frequency shift keying and the signal would have been a lot more obvious. It's still pretty cool to see your own signal coming back from the auroral region.

In conclusion... What I have outlined above is basically just putting the microphone from your radio up to the speaker of a PC and checking a website to see if your signal was heard, it's really that simple. It would be nice to see others giving it a try.

Links... Here are some useful sources...

1) https://groups.io/g/qrssknights - This email group is the place to go for all things QRSS related.

2) https://www.qsl.net/pa2ohh/21htmlqrss01.htm - PA2OHH website for generating QRSS signals.

3) https://www.qsl.net/sa6bss/ - SA6BSS grabber in Sweden.

4) https://www.qsl.net/pa2ohh/grabber.htm - PA2OHH grabber in the SE of Spain.

5) https://qsl.net/g4iog/ - G4IOG grabber in SE England

6) https://www.qsl.net/g0ftd/grabber.htm - G0FTD operates a grabber from various online receivers.

7) https://qsl.net/wa5djj/ - WA5DJJ operates several grabbers from New Mexico in the United States.

8) https://swharden.com/qrss/plus/ - AJ4VD has links to a lot of grabbers

Thursday, January 18, 2024

2024 10m QRSS Challenge: - OH5KUY 17th Jan


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year.

QRSS are very slow morse code transmissions where the dots and dashes are several seconds long and the signals are decoded by looking at a waterfall display on a screen rather than listening to the signal.

The QRSS signals are usually just below the WSPR signals on the amateur radio bands. This means it's possible to have your PC decoding WSPR signals up around 1500 Hz while you look at the QRSS signals about 500 Hz or so lower in the audio spectrum at the same time.

2024 #8 - OH5KUY... The 8th QRSS signal that I managed to capture this year was Ari, OH5KUY in Finland. Ari reports that he is running 1.5-watts into a C610 vertical antenna. His locator square is KP41DB.


The distance is from OH5KUY to my location is about 2437kms, an ideal distance for F2 layer propagation when the 28 MHz opens up to these northern latitudes.

Ari's signal was actually very strong for a QRSS signal and I had to adjust the volume settings on the radio because it was too strong compared to the rest. Most QRSS signals are buried in the noise and you get to see them only on a screen. Ari's signal by contrast was up to S4 here and it was a loud clear signal.


This is the signal in more detail. As you can see, something happened at Ari's location at about 13:52 to cause a slight rise in frequency. It's only about 4Hz but it can be seen.

That's the beauty of QRSS, you can actually 'see' the signal. You can see the frequency drift , you can see how the strength of the signal changes over time and you can see any unusual propagation effects.

With digital modes like FT8 and WSPR, you either get a decode or you didn't and if there isn't a decode, you're often not sure why. With SSB or CW, you're listening to an audio signal but it's what's happening here and now. You're missing those visual clues of QRSS which add so much more information.

The one that got away... It looks as if there was Sporadic-E on the band as well on the 17th. TF3HZ in Iceland popped out of the noise and I was all ready to get a nice screengrab but I lost it when I changed some settings on the SpectrumLab software. Lesson... screengrab first, adjustments later. Another day...

In summary... That brings the QRSS tally so far for 2024 up to 8-callsigns & 5 DXCC.

1) 08 Jan 2024: VE1VDM - DXCC #1
2) 10 Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5



Tuesday, October 22, 2024

A mystery QRSS signal on 28 MHz from North America - 21st Oct 2024


Over the last few days, there has been a mysterious QRSS signal on 28.1246 MHz USB which is also the WSPR frequency on the 10m band. I was seeing it during the afternoon and evening so I guessed it was probably from North America.

It was usually very weak and I was usually only getting fragments of the QRSS signal. I tried to make sense of the dots and dashes but I couldn't be sure if I was actually get real dots and dashes or was it just part of the signal that was missing.

The screen capture above is one of the better ones from the 20th of October. The QRSS signal at the bottom is from AE0V but who was at the top? It didn't seem to make any sense.

On the 21st of October, I got two reasonable screen captures. I then posted these to https://groups.io/g/qrssknights to see if anyone could help. This forum is the main source for all up to date information regarding QRSS signals.

Thanks to Halldór, TF3HZ in Iceland, he was able to solve the mystery! He posted the following...

Finally with this information, all the pieces fitted into place. These are my screen grabs from the 21st of October with the signal shown.


The mystery signal is from KC2CHK in the state of New York and his locator / grid square is FN13WD.

With most QRSS signals, a dash is represented by a long dash and a dot is represented by a short dash. 
KC2CHK is using the same length of short dash for both dots and dashes except that the real dashes are at the top of the QRSS waveform whereas the dots are at the bottom.

In the example above, you can see it starts with 'Up - Down - Up' which is 'dash dot dash' which is the letter K.

Some letters can be particularly confusing especially when the signals are weak. An example is the letter H. When the signals are very weak, it looks like one very long dash. But on closer inspection, you can see that it's actually four short dashes on the lower part of the waveform i.e. four short dots which is the letter H.

Mystery solved, thanks Halldór!

WSPR... I checked the WSPR ROCKS website and sure enough, I had actually heard KC2CHK sixty-nine times over the space of three days (19th, 20th & 21st of Oct 2024) on 10m. His power is listed at just 0.2 watts and is likely alternating between WSPR and QRSS signals for his transmissions.

The strongest WSPR signal is -18dB which means in reality means that it's inaudible to the human ear. If the QRSS signal wasn't shown by software on a screen then I wouldn't have known it existed.


Propagation... The distance of the path from my location on the south coast of Ireland to KC2CHK in New York is about 5000kms which suggested to me that it was F2 layer double hop.

The map above from VOACAP seems to support this as you can see the skip zone in the middle of the Atlantic and the second F2 hop covering parts of western Europe.

Equipment... Frederick, KC2CHK reports that he was using a QRP-Labs Ultimate3S for the transmitter which is running about 200-milliwatts into a half wave dipole about 5.5m above ground level. It was only built in October of 2024 so this is a new QRSS signal on the band. The antenna is oriented east west which means the best radiation is probably in the north south directions.

QRP Labs Ultimate 3S units for 50 MHz & 28 MHz at KC2CHK


Frederick also confirms that he is running DFCW instead of FSKCW just to speed up the transmission, as it can go out in much less time than FSKCW.

In summary... That brings the QRSS tally so far for 2024 up to 26-callsigns & 11 DXCC.

1) 8th Jan 2024: VE1VDM - DXCC #1
2) 10th Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8
14) 26th Feb 2024: VE6NGK
15) 27th Feb 2024: NM5ER
16) 28th Feb 2024: VK4BAP - DXCC #9
17) 2nd Mar 2024: WA1EDJ
18) 5th Mar 2024: FR1GZ/B - DXCC #10
19) 30th Apr 2024: IK1WVQ
20) 8th May 2024: IW0HK/B
21) 14th May 2024: IZ1KXQ/B
22) 3rd Jun 2024: M0GBZ
23) 3rd Jun 2024: G0FTD
24) 17th Oct 2024: AA7US
25) 19th Oct 2024: DJ5CW - DXCC #11
26) 21st Oct 2024: KC2CHK

Monday, May 25, 2020

First trans-Atlantic QRSS signal of 2020 on 28 MHz - Mon 25th May 2020


Monday 25th May 2020. For a change, I left the radio on the WSPR frequency of 28.1246 MHz this morning to see what could I hear. At the time, there seemed to be some unusual propagation in that I was hearing Iceland to the north-west.

Then I got two decodes of the WSPR signal from Vernon, VE1VDM in Nova Scotia, Canada!

Timestamp          Call MHz SNR Drift Grid Pwr Reporter RGrid km az
 2020-05-25 11:30 VE1VDM 28.126118  -24 -2 FN85ij 2 EI7GL  IO51tu  4001 59 
 2020-05-25 11:20 VE1VDM 28.126118 -22 -1 FN85ij EI7GL  IO51tu 4001 59 

While 28.0008 MHz is the usual QRSS frequency on 10 metres, some stations transmit right next to the WSPR frequency of 28.1246 MHz so that receive stations can listen for both WSPR and QRSS signals without changing frequency.

It just so happened that I had the SpectrumLab audio analyzer programme running as I often use it to check the frequency of beacons on 28 MHz. When I looked, I could see the QRSS signal (very slow morse) from VE1VDM but it was slightly drawn out as I was using the 'QRSS 1' option. I switched to QRSS 3 and the screen grab is shown above.

I suspect the signal from Vernon may have been at its best when I was hearing the WSPR signals. I'd guess that the QRSS signal used to generate the plot shown above is certainly not stronger than the -22dB or -24dB WSPR signal.

VE1VDM was using a QRP Labs U3S and 5 watt PA combo sending 4 watts into a full size Windom hung as an inverted V at about 30' AGL at apex, I was using a vertical half-wave for 28 MHz about 4 metres above ground level.

Mode of Propagation???... How did this QRSS signal cross the North Atlantic?


A few days ago, VE1VDM had been heard on WSPR in Luxembourg and Germany, a distance of about 5000 kms. This was most probably triple hop Sporadic-E... i.e. 1700kms x 3 hops. The second hop signal that day was probably landing somewhere in the ocean about 600kms to the west of Ireland.

For the trans-Atlantic opening today, I think I was hearing VE1VDM via double hop Sporadic-E i.e. 2 x 2000km hops. It's likely that the signal may have reached only Ireland and the western part of the UK as that's close to the limit for two hops on 28 MHz.

For more information on QRSS activities, there is an active group HERE

Thursday, May 21, 2020

QRSS Signals from the UK on 28 MHz - Tues 19th May 2020

QRSS is a mode where a morse code signal is sent very slowly so that it can seen on a screen rather than heard by ear. This allows signals that can be up 20dB below the noise level to be seen.

While it might seem outdated by some of the more modern digital modes like WSPR or FT8, what is really interesting about QRSS is that you can visually see the propagation moving around.

On Tuesday the 19th of May 2020, there was really intense Sporadic-E on 28 MHz with a very short skip opening from Ireland to the UK. This allowed me to hear the QRSS signals from stations near London as shown on the map below....


The key points here before we look at the QRSS plots are...

a) G6NHU, G0MBA & G0PKT are all very close to each other and about 650 kms from my location.

b) G0FTD is about as far but is 50 kms to the south of the cluster of three.

c) M0GBZ is along the same path as the group of three but is about 90 kms closer at 560 kms.

d) The shorter the distance then the smaller the Sporadic-E footprint tends to get.


As shown above, it tends to be long and narrow and this will be shown in the QRSS examples below.

***

Screen grab 1.....


In this image above, you can see all of the signals. G0FTD has two transmitters and is the weakest.

***

Screen grab 2...


In this image, the Sporadic-E footprint moves north and even though G0FTD is just 50 kms from the more northern stations, he moves outside the footprint.

The cluster of three remain remain the same while M0GBZ disappears as the skip lengthens for a while before coming back.

* * *

Screen grab 3...


In this plot, the Sporadic-E skip distance increases and M0GBZ disappears. G0FTD disappears for about two minutes before the footprint moves south again.

On the right hand side, all of the QRSS signals are there but they now become quite fuzzy which may indicate multipath. Perhaps the Sporadic-E has broken up into several clouds rather than maybe the single one before.

In conclusion..... This was the my first reception this year of the UK QRSS stations on 28 MHz and as you can see from what's written above, the plots show a lot.

From what I now, the QRSS mode is the only one where you can actually see on a screen how the propagation is moving around in real time.

Listen on 28.0008 MHz on CW for these stations running just a few hundred milliwatts.

Wednesday, January 10, 2024

2024 10m QRSS Challenge: - VA1VM 10th Jan


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year.

QRSS are very slow morse code transmissions where the dots and dashes are several seconds long and the signals are decoded by looking at a waterfall display on a screen rather than listening to the signal.

The QRSS signals are usually just below the WSPR signals on the amateur radio bands. This means it's possible to have your PC decoding WSPR signals up around 1500 Hz while you look at the QRSS signals about 500 Hz or so lower in the audio spectrum at the same time.

2024 #2 - VA1VM... The first signal I captured in 2024 was from Vernon, VE1VDM in Nova Scotia, Canada back on the 8th of January. This is outlined in this previous post.

Conditions on the 28 MHz band were better on the 10th of January and the 'VDM' QRSS signal was in again but stronger as can be seen above. For this beacon, Vernon was using a QrpLabs U3S with low pass-filter into a QrpLabs power amplifier delivering 1-watt on 10m. The antenna was ground mounted Hustler 6BTV vertical.

In the last 24-hours, Vernon has put a second QRSS transmitter on the air with the callsign VA1VM. You can see this as a weaker signal in the image above.

The VA1VM signal is from a 150 milliwatt transmitter into a  Hustler 10m 1/4 wave resonator mounted on a 1.37-metre long Hustler mast extender. It really is amazing that a 0.15 watt signal can make it across the Atlantic.

Both beacons are located in the town of Truro in Nova Scotia and are just a few kms apart. The antenna on my side was a simple CB type half-wave vertical.


The map above shows the location of the transmitter and receiver. The distance is about 4000kms which is ideal for 1-hop of F2 layer propagation.

Even though it's the same person, it's a second QRSS signal. That brings the QRSS tally so far for 2024 up to 2-callsigns & 1 DXCC.

08 Jan 2024: VE1VDM
10 Jan 2024: VA1VM

Sunday, October 20, 2024

2024 10m QRSS Challenge: - DJ5CW in Germany - 19th Oct


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year. On the 19th of October, I heard / saw the QRSS signal of DJ5CW in Germany.

QRSS is a mode where a morse code signal is sent very slowly over the space of several minutes allowing very weak signals to be displayed on a waterfall display.

The story behind this reception report started at 10:23 UTC when I got an email from Fabian, DJ5CW to say that he was doing QRSS tests on 28 MHz until 14:00 UTC and if I wanted to try and capture his signal.

The thing about QRSS is that it is a 'visual mode' and I use the SpectrumLab software to capture the waterfall display in 10-minute periods. This means that if I'm not checking the screen on a regular basis then it can be easy to miss a signal.

I checked for the QRSS signal from DJ5CW and there was nothing on the screen. I did notice however that I was hearing WSPR signals from Germany so I suspected that there was some Sporadic-E propagation about.

I sent Fabian an email an email at 10:41 UTC to say that I would look for his signal. Needless to say, as soon as I sent the email, his signal appeared! 😂

At 10:52 UTC, I got a good capture of the QRSS signals on the waterfall and these are shown above.

As noted already, I believe the signal from DJ5CW was via Sporadic-E and as can be seen, it's a nice clean display. 

I think the signals from G0PKT and G0MBA near London are via F2 layer backscatter and there is a certain amount of fuzz on these signals. I see these two signals every day and they are almost ever present as long as there is some sort of decent F2 propagation on the 10m band.


G0MBA and G0PKT are about 650kms from my location and are usually a bit too close for Sporadic-E. DJ5CW at just under 1500kms is just about perfect for Sporadic-E when it appears on the band.

Equipment... For this reception report, I was using a simple CB half-wave vertical about 4m above ground level. DJ5CW was using an Elecraft K2 transceiver which is keyed by an Arduino microcontroller. The power output was 1-watt into a 13m long vertical antenna on a fiberglass mast looking out of a skylight window of his 4th floor flat in central Munich

LCWO... As you might guess from the callsign, Fabian is a big fan of CW / morse code. He is the owner of the Learn CW Online website... https://lcwo.net/

In summary... That brings the QRSS tally so far for 2024 up to 25-callsigns & 11 DXCC.

1) 8th Jan 2024: VE1VDM - DXCC #1
2) 10th Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW
8) 17th Jan 2024: OH5KUY - DXCC #5
9) 18th Jan 2024: TF3HZ - DXCC #6
10) 6th Feb 2024: VA3RYV
11) 16th Feb 2024: IK2JET - DXCC #7
12) 16th Feb 2024: N8NJ
13) 21st Feb 2024: PY3FF - DXCC #8
14) 26th Feb 2024: VE6NGK
15) 27th Feb 2024: NM5ER
16) 28th Feb 2024: VK4BAP - DXCC #9
17) 2nd Mar 2024: WA1EDJ
18) 5th Mar 2024: FR1GZ/B - DXCC #10
19) 30th Apr 2024: IK1WVQ
20) 8th May 2024: IW0HK/B
21) 14th May 2024: IZ1KXQ/B
22) 3rd Jun 2024: M0GBZ
23) 3rd Jun 2024: G0FTD
24) 17th Oct 2024: AA7US
25) 19th Oct 2024: DJ5CW - DXCC #11

Tuesday, January 16, 2024

2024 10m QRSS Challenge: - G0PKT, G0MBA & AE0V 15th Jan


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year.

QRSS are very slow morse code transmissions where the dots and dashes are several seconds long and the signals are decoded by looking at a waterfall display on a screen rather than listening to the signal.

The QRSS signals are usually just below the WSPR signals on the amateur radio bands. This means it's possible to have your PC decoding WSPR signals up around 1500 Hz while you look at the QRSS signals about 500 Hz or so lower in the audio spectrum at the same time.

2024 #3 & #4 - G0MBA & G0PKT... The QRSS signals shown above were captured at about 10:40 UTC and it shows the QRSS trace from G0MBA and G0PKT who are 650kms to the east of my location in Essex, England. From what I know, I think both are running 0.2-watts into vertical antennas.


You'll notice that the signals have a slight 'fuzz' as opposed to a clean tone. I hear/see these two stations practically every day and I think the signals are F2 layer backscatter. If I was to try again during the Sporadic-E season during the summer, both signals would be nice and clean.

At 650kms, both signals from G0MBA & G0PKT are way too far for ground wave and too close for normal F2. The signals are probably being propagated off the F2 layer, being reflected in some distant region and then returning to my location.


2024 #5 - AE0V...In the afternoon, I got a capture of the QRSS signal of AE0V in Minnesota (EN34FU) in the USA who is about 6,000kms from my location.

Ned, AE0V reports using a solar powered transmitter with no battery storage running 100mW into a 1/4 wave stainless whip about 8m above the ground.


The signal from the USA is easily explained as it's via multi-hop F2 layer propagation. 

In summary... That brings the QRSS tally so far for 2024 up to 5-callsigns & 3 DXCC.

1) 08 Jan 2024: VE1VDM - DXCC #1
2) 10 Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3

Monday, June 1, 2020

QRSS reception reports on 28 MHz - Fri 29th May 2020

Friday the 29th of May 2020 was an extraordinary day with widespread Sporadic-E across Europe. While the various VHF bands up to 144 MHz were open, I spent some time listening for QRSS signals (very slow visual morse code) on 28 MHz.

To put the European stations heard in context, first see the map with distances below...


a) First Grab... The short skip on 28 MHz started early and I heard the usual stations near London, roughly 650kms.


M0BMN is a lot further west and as he is just 430kms away, I had trouble getting a good trace of his QRSS signal.

b) Doppler... This is another screen grab later on. Note the double trace on some of the signals.


Pay special note to the signal from G0FTD. On the left, it's weak but clear. On the right, there are two distinct signals from him. The upper trace is steady and is almost as if that signal is coming from a stationary Sporadic-E cloud. The lower trace starts to diverge more over time as if it that signal was coming from something moving at speed and creating doppler shift.

I suspect it was coming from a Sporadic-E cloud that was in motion and half-ways through the second trace, it either reached a point or ionization level that it no longer supported propagation.

The other theory might be that it was aircraft scatter although I still prefer the moving Sp-E cloud theory.

c) Iceland... There was also some good Sporadic-E conditions to the north and I got a screen grab from TF3HZ in Iceland for the first. time.


I also noted a signal up higher in the band but I'm unsure who it is? The amount of Frequency Shift Keying (FSK) seems to be lower than the rest.

(Update: The mystery signal is LB3AH in Oslo, Norway).

d) TF3HZ & M0GBZ clashing... In this screen grab, note the signal from TF3HZ. At first, he is in the clear and on his own. Then the short skip to the east improves and I note that TF3HZ in Iceland and M0GBZ near London are actually on the same frequency.


On a band where there are just 10 or so Hertz between stations, it's easy to end up on the same frequency as someone else especially if they are from a different area.

(Update: The mystery signal at the top is probably an image of G0FTD. The mystery signal at 620 Hz is LB3AH in Norway)

As this second grab shows, they were clashing for quite a while as the conditions were excellent.


e) M0GBZ in the clear again... In this grab, you can see how on the left, TF3HZ in Iceland and M0GBZ to the north of London are still clashing. I then lose the path to Iceland and the signal from M0GBZ becomes clear again.


f) Trans-Atlantic... VE1VDM... All of the QRSS signals from Europe are via one-hop Sporadic-E. To cross the Atlantic, the signal needs several Sporadic-E hops.

As I'm on the north-west edge of Europe, I'm within two Sporadic-E hops of Vernon, VE1VDM in Nova Scotia in Canada.


I first noticed VE1VDM's signal on WSPR on 28.1246 MHz and he transmits a QRSS signal as well just below it. He sends the letters VDM and the weak signal is shown below...


Vernon also transmits a QRSS signal on 28.0008 MHz where the European stations are...


And that mysterious signal again?!?

During another grab, there was a brief opening to G6NHU near London and I could see that VE1VDM was almost on the same frequency.


Towards the bottom of the screen, there is a very faint record of the signal from OK1FCX in the Czech Republic. He sends a signal that has three levels so it can be easy to identify even if the signal is too weak to decode.

In conclusion... Another good day for QRSS signals on 28 MHz and it's interesting to note the way signals change over time. As noted in a previous post, I believe QRSS is the only mode where you can actually see the propagation changing visually.

At this stage, I'm running out of new stations to catch! I think I have seen most of the European stations at this stage.

Links...
1) Report from MW1CFN for 28 MHz QRSS signals heard in NW Wales on the same day.

Wednesday, January 17, 2024

2024 10m QRSS Challenge: - RD4HU & W1BW 16th Jan


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year.

QRSS are very slow morse code transmissions where the dots and dashes are several seconds long and the signals are decoded by looking at a waterfall display on a screen rather than listening to the signal.

The QRSS signals are usually just below the WSPR signals on the amateur radio bands. This means it's possible to have your PC decoding WSPR signals up around 1500 Hz while you look at the QRSS signals about 500 Hz or so lower in the audio spectrum at the same time.

2024 #6 - RD4HU... Most QRSS signals take the form of very slow morse code transmissions but sometimes, other modes are used. The screen capture above shows the slow-Hellschreiber mode which is more often referred to as "slow Hell".

RD4HU is located in the city of Samara on the Volga River in European Russia and was using 5-watts as far as I know. His signal was strong as can be seen by the clear trace.


The distance to my location on the south coast of Ireland is about 3855 kms which is ideal for one F2 layer hop, hence the strong signal.

2024 #7 - W1BW... Another method of sending a signal is as a symbol or character. This is where some degree of artistic flair comes into play.

Bruce, W1BW in Boston has a flying 'W' that he uses for QRSS. W1BW is running 200mW from a Hermes Lite 2 and the antenna is a random dipole about 25m long on the rooftop of a condominium building in the city of Boston, about 25m AGL and 2m above roof level..


W1BW is located just over 4700kms from my location and the mode of propagation was probably two hops from the F2 layer of the ionosphere.

In summary... That brings the QRSS tally so far for 2024 up to 7-callsigns & 4 DXCC.

1) 08 Jan 2024: VE1VDM - DXCC #1
2) 10 Jan 2024: VA1VM
3) 15th Jan 2024: G0MBA - DXCC #2
4) 15th Jan 2024: G0PKT
5) 15th Jan 2024: AE0V - DXCC #3
6) 16th Jan 2024: RD4HU - DXCC #4
7) 16th Jan 2024: W1BW

Tuesday, April 2, 2019

QRSS signals heard on 80 metres - 1st Apr 2019

I follow a number of blogs and sometimes I read something which sparks my interest. One such item was the recent post by G6NHU about QRSS... a mode where morse is sent at very slow speeds and the signals are seen on a computer screen rather than being listened to.

I spent some time on this mode before but it was back in 2011. I had assumed that with the introduction of newer digital modes like WSPR and FT8, QRSS had probably died out. I seem to remember listening to a podcast some time back which said as much.

After reading G6NHU's post, I was suprised to find that there is still plenty of QRSS activity and there is also a very active QRSS community on Groups dot io.

G6NHU has a detailed list of QRSS frequencies and they seem to be strategically positioned just below the WSPR frequency on some bands.



The net result of this is that it's possible to use the WSJT-X programme to listen to WSPR signals on say 80m and also look at the QRSS signals on the waterfall display at the same time.

Examples of QRSS signals heard on 80m - 1st Apr 2019

This is the waterfall on the WSJT-X programme rotated 90 degrees. The dashes and dots in morse for G0FTD can be seen.


Some are a bit more elaborate with full call signs shown... see OK1FCX below.


Some have gone a bit further and their signals show up as complex images like fish!


... or maybe it's a dolphin? :o)

And another fish but this one looks a bit like a shark...



Also TF3HZ as shown below. Sometimes it's a case of taking a few screenshots and then trying to put the pieces together.



Some Links...
http://www.g6nhu.co.uk/frequencies.html
https://groups.io/g/qrssknights
https://qsl.net/g0ftd/other/74%20-%20Knights%20QRSS%20Winter%20Compendium%202018.pdf