Thursday, April 7, 2022

Opening on 40 MHz between the UK and Chad - 6th Apr 2022


It looks as if there was an opening on the 40 MHz band on Tuesday the 6th of April 2022 when the FT8 signal from Paul, G9PUV (G7PUV) was heard by TT8SN in Chad.

Rcvr Band Mode Distance Time (UTC)
TT8SN 8m FT8 4518 km 14:25:11

According to the PSK Reporter website, TT8SN was hearing the signal from G9PUV at +16dB which is very strong.

G9PUV was using 25 watts into a log periodic antenna for the tests.

The strong signal strength, the distance of 4,500kms and the time suggests that this was a F2 layer opening with just one hop involved. It looks as if the North-South path from the south of England to Africa is now reaching as high as the 40 MHz band.

The solar flux on the 6th of April was 117 which is down from the recent peak of 156 a week ago.

Wednesday, April 6, 2022

Reception reports for the ZS6WAB beacon on 40 MHz - Q1 2022


With the recent increase in sunspot numbers and the improvement on the HF bands, there has been a lot of interest in the ZS6WAB beacon on 40.675 MHz. This beacon which usually sends a message in CW is now seen as a valuable early warning system for potential openings on the 50 MHz band between Europe and South Africa.

In the first quarter of 2022, a total of 52 stations uploaded reception reports to the DX Summit DX cluster and a map of these are shown above. Outside of Europe, there are two to note. 

a) TT8SN in Chad at about 4,300kms was most likely one F2 layer hop.

b) There was a spot on the cluster  from W3PQS in the USA but unless I hear otherwise, I think it's a mistake (not counted as part of the 52). I sent W3PQS an email but got no reply. 

Europe... This is the map for Europe in more detail...


As might be expected, the majority of the stations that heard the 40 MHz signal of ZS6WAB are located in the southern half of Europe. 

As for propagation modes, it's likely TEP was involved with some F2 layer reaching as high as 40 MHz as well on this North-South path.

It was interesting to see that the signal from South Africa managed to reach OH5ZA in Finland as well, a distance of almost 9,500kms.

Top Spotters... This is a list of the top spotters on the DX cluster broken down into the number of days they heard and reported the ZS6WAB beacon on 40 MHz. 

It's interesting to note that both DK2EA and F4CXO reported hearing the 40 MHz ZS6WAB beacon on 22 days in Q1 of 2022.


Caveat... I used the DX spots from the DX Summit cluster to compile the data for this post. It's possible there were other spots which were not on this platform but other sources of information are incomplete. I do think however it gives a reasonably accurate picture of who heard the South African beacon on the 40 MHz band.

In Conclusion... First off, it's great to see so many stations in Europe active and listening on the 40 MHz band! 

I think the reception reports of this 40 MHz beacon shows just how valuable an allocation between 28 MHz and 50 MHz can be, especially for beacons. 

It would be nice if more countries allowed one off experimental 40 MHz beacons as advocated by the IARU even if an amateur radio allocation is unlikely.

Tuesday, April 5, 2022

Reception reports for G9PUV on the 40 MHz band - 5th April 2022



On the 4th of April 2022, Paul G7PUV received a UK Innovation and Research License from OFCOM for the 40 MHz band.

On the 5th of April, Paul carried out some test transmissions using FT8 on 40.680 MHz with the call sign G9PUV.

The map above shows the stations that decoded the FT8 signals and the log is shown below...

Rcvr Band Mode Distance Time (UTC)
S50B 8m FT8 1167 km 16:13:43
EI9KP 8m FT8 705 km 16:05:41
G0JHC 8m FT8 366 km 15:50:14
G4AWP 8m FT8 162 km 16:10:41
G4WSZ 8m FT8 148 km 16:10:42
G0LRD 8m FT8 138 km 18:39:41
G4APB 8m FT8 70 km 16:21:12
G0CHE 8m FT8 51 km 16:13:14
G7PUV/A 8m FT8 9 km 18:37:14

Most of the signals under 165kms were most likely tropo, it's not so obvious the mode of propagation for G0JHC, EI9KP & S50B.

Phil, EI9KP reports... "I tuned to 40.680MHz and just let it sit on FT8, to my susprise I logged UK Innovation and Research License "G9PUV".  The 'CQ' call got forwarded automatically to PSKReporter. For reception I use a Delta Loop in Horizontal Polarization."


The screen grab from Phil is shown above.

With the Sporadic-E season starting soon, there should be plenty of reports of the UK stations from across listeners across Europe.

Links...
1) For more info on the 8m band, see my 40 MHz page

Thursday, March 31, 2022

RSGB statement concerning 40MHz in the UK


In a previous post, I outlined how several radio amateurs in the UK were in the process of applying for Innovation and Trial licences from OFCOM to carry out tests on the 40 MHz band. 

The RSGB have now outlined the position of OFCOM on the issue...

***

RSGB statement concerning 40MHz in the UK

There have been recently a number of reports of individual holders of UK Amateur licenses gaining Innovation and Trial licences from Ofcom to conduct experimental transmissions on 40MHz (8m).

Ofcom has made it very clear for several years that there was no likelihood of UK radio amateurs gaining any access to 40MHz which included NoV (Notice of Variation) to a UK amateur licence or an amateur SRP (Special Research Permit). 

The RSGB has consulted Ofcom as to the exact status of these Innovation and Trial licences. Ofcom’s reply was as follows:

“We have been approached by a couple of individuals wanting to conduct experiments in the band. Like all other research and innovation requests Ofcom receives we have put these through our Innovation and Trial licensing regime. If the coordination checks are passed, they are being issued with an Innovation and Trial licence. These are issued for up to 12 months on a non-interference, no protection and non-operational basis. 

These are not Amateur Radio Special Research Permits and licensees do not fall under the Amateur Radio licence terms and conditions. Therefore, applicants are not required to have passed an amateur exam or hold a callsign. Although we are allowing this experimentation, we would like to make it clear that we have no proposals to allow wider amateur radio access to the 40 MHz band.

Clause 9(6) of the UK amateur terms states “The Licensee may receive Messages from an overseas amateur or from an Amateur duly authorised by Ofcom on a frequency band not specified in Schedule 1 but the Licensee may only transmit on a band specified in Schedule 1 which is authorised under Clause 9(2).”

Users of 40 MHz under an Innovation and Trial (I&T) licence are not authorised under the Amateur Radio licensing regime and there is no requirement to have passed an amateur radio exam to obtain such a licence. Clause 9(6) of the Amateur licence is designed to cover additional frequencies, such as 70 MHz and 146 MHz, which are not contained in Schedule 1 of the Amateur Radio licence but Ofcom has authorised via a Notice of Variation (NoV). 

We would like to make clear that we have not duly authorised any amateur to use a frequency band not specified in Schedule 1 through this process. Reception of transmissions authorised under an I&T Licence should therefore be treated the same as those authorised under other licences that Ofcom issues such as business radio or maritime.

We would also like to make clear that I&T licences do not permit operational or commercial use. These licences are designed to support individuals and companies in carrying out research, development, testing and demonstrations of equipment. 

Therefore, the use of the 40 MHz band under this licence should be for these purposes only. The licences are granted on the basis that the user will be carrying out such research and not operating on the band in a similar way to the frequencies listed in Schedule 1 of the licence.”

Ofcom’s view is very clear. Any operation on 40MHz in the UK is not Amateur radio and therefore cross-band contacts to such stations by UK radio Amateurs operating on the bands licenced for amateur radio are not permitted.

*** RSGB Statement Ends

Just to highlight that the RSGB are just outlining the position of OFCOM so there is no point in bashing the RSGB over this.

Wednesday, March 30, 2022

21,000km long path opening on 50 MHz between Australia & the Canary Islands - 15th March 2022


At the start of March 2022, I reported on how there was some 18,000km plus openings on the 50 MHz band between New Zealand and the Canary Islands. See previous post HERE.

About a week later on the 15th of March 2022, this distance was exceeded when there was a long path opening on 50 MHz between the east coast of Australia and the Canary Islands. The distance on this occasion was an amazing 21,100 kms!

I'm a little bit late with the post as I've been busy but it's worth highlighting that it happened. There is no shortage of long distance openings on the 50 MHz band at the moment but these tend to be mostly North-South and TEP related.

It's easy to just look at the map and so what? But remember this was at 50 MHz, a VHF band and not down on the HF bands where long path openings are pretty common.


It looks as if FT8 was used by most stations for the opening. The partial screen grab above shows the contact between EA8TL on Tenerife and VK4MA near Brisbane.

Amazingly, Jorge EA8TL was using just a Hexbeam for the contact and he was beaming towards the Caribbean.


The opening wasn't confined to just VK4MA and EA8TL. These are some of the spots from the DX-Cluster.

EA8DO 50313 VK4HJ 21:55 14 Mar 22 ft8 Australia
EA8DO 50313 VK4MA 21:43 14 Mar 22 ft8 Australia
EA8DO 50313 VK4QG 21:43 14 Mar 22 ft8 Australia
EA8TL 50313 VK4MA 21:42 14 Mar 22 ft8 Australia

Propagation Mode??? ...It's probably no accident that all stations involved in the opening were no more than 25 degrees or so from the equator. Radio propagation at these latitudes reaches much higher frequencies than for those located much further north or south.

It's highly likely that a large part of the path was due to chordal mode without the signal hitting the ground.


As for how much of the signal was due to F2? Sp-E? TEP?

Just for the record, the solar flux on the day was 110.

Tuesday, March 29, 2022

History of the G9 Radio Test & Development License in the UK


In a previous post, I outlined how some radio amateurs in the UK are obtaining special permits to operate and experiment on the 40 MHz band. As part of the feedback, someone mentioned the old G9 callsigns which were a Test & Development license in the UK.

Anyone familiar with old copies of the Practical Wireless magazine will remember antenna articles and designs by Fred Judd, G2BCX. He popularised antennas like the Slim Jim for 144 MHz and he used the callsign G9BTN for much of his work.

Lewis, M3HHY put together a nice video about the history of these G9 callsigns and it's embedded below.

Sunday, March 27, 2022

Several radio amateurs in the UK obtain special 40 MHz permits

In a previous post in February of 2022, I reported on how the UK licensing authority OFCOM had refused to give NOV's (Notice of Variation) to radio amateurs to carry out tests on the 40 MHz band.

The good news is the OFCOM are allocating temporary Innovation and Research licenses.


Roger, G3XBM in the east of England can operate from the 2nd of April for 1-year with 5-watts. Roger writes... "After a very long wait OFCOM has approved my 8m TX permit that runs from April 2nd for a year.

It permits me to use 40-42MHz with digital modes (including CW) at 5W ERP max. I expect to erect a wire dipole which is directed towards Europe.

I expect to be mostly on FT8 around 40.676MHz with precise frequency done in liaison with others. What I hope is all 8m FT8 stations can be monitored with one USB dial setting, but spaced out. 5W should certainly cover Europe with Es. I shall try some local CW crossband QSOs, but hope to be on FT8 24/7."

***

John, G0JJL in the north-west of England can operate from the 1st of May 2022. John writes... "I am one of the UK Amateurs that have recently obtained a temporary 12 month licence to transmit on 40MHz. 

These licences are not Amateur Radio special permits, they are Innovation and Research licences which have nothing to do with Amateur Radio at all. In fact, anyone in the UK can apply for this type of licence whether they are a licensed Amateur or not. 

The UK regulator, Ofcom, do not issue callsigns with Innovation and Research licences, it is up to the licence holder if they wish to use one and the licence holder can use any callsign of their choice. Some UK Amateurs who obtain an Innovation and Research licence might decide to use their Amateur Radio callsigns on 40MHz and this is perfectly legal so far as Ofcom are concerned. However, using their Amateur Radio callsign on 40MHz does not mean their station is then an Amateur Radio station operating on 40MHz, it is not, it remains an Innovation and Research licence station only and this as been confirmed by Ofcom. 

My Innovation and Research licence was granted to allow research of propagation in the 8m band and my licence permits use of 40.680MHz and 40.690MHz using narrow band digital modes and CW from 1st May 2022 from two locations. The callsign to be used is GR9A.

***

Neil, G0JHC in the north-west of England has also applied for a permit and will be using the callsign GR9B. Neil is located in the same area as G0JJL.

* * *

Paul, G7PUV in the south-east of England is currently applying for a permit. Others are likely to follow.

Analysis... This is indeed welcome news as it allows more signals on the band which is great for experimentation. There's only so many times you can report a beacon on 40 MHz.

At the end of April, the Sporadic-E season will have started and it should be quite easy for the UK stations to be heard in countries with permits like Slovenia (S5) and Croatia (9A) which are around the 1200km mark.

By late May and all of June, there should be plenty of short skip Sporadic-E with distances in the region of 500-1000kms possible.

There are plenty of opportunities for radio amateurs in the UK to participate in these experiments by listening for the permit holders and working them cross band from 40 MHz to either 28 MHz or 50 MHz.

40 MHz is an excellent band for meteor scatter tests. Tropo contacts up to 200kms may be possible and aircraft scatter propagation can also be explored.

Trans-Atlantic contacts to the permit holders in the USA should be possible in May and June by multi-hop Sporadic-E. There is also the possibility of very long paths to South Africa.

Maybe in time, radio amateurs in the UK will get an allocation at 40 MHz but for now, this is a 'foot in the door'. The results of these Innovation & Research permits can be used to show a real need for a formal amateur radio allocation for this band.

Can EI stations work these special permits? ...Not to be pedantic but the answer is no. In Ireland (EI), the amateur radio license states quite clearly that we can only make contact with other radio amateurs. Making contact with a special experimental license in the USA, Canada or the UK is not the same as say Slovenia, Croatia or South Africa.

It's up to EI stations what they do formally or otherwise but I'm just clarifying the current situation.

Links...
a) Plenty of information as always on my 40 MHz page.

Friday, March 25, 2022

EI1KNH beacon on 40.013 MHz to trial different modes - April 2022


The 40 MHz / 8m band is one part of the spectrum which is very much experimental in nature be that for checking propagation or equipment.

With that in mind, the EI1KNH 8m beacon near Dublin on 40.013 MHz is currently trialing different modes. These include CW, FT8, SSTV, RTTY, MSK144, WSPR and stepped power levels.

The modes and time sequence is shown below and any reports and feedback should be reported to the beacon keeper, Tim EI4GNB.

Note that this is an experiment. It's highly likely the modes will change again in time depending on feedback and what reception tests people are carrying out.

The highlights:
*Every 10 minutes, 06-24hrs FT8 & cw (00,10,20,30,40,50mins past the hour)
*14,34,44 & 54 past the hour, 24hrs, WSPR (preceded by variable power carrier)
*Full service 6am to midnight
*Night mode midnight to 6am mutes all but WSPR & graduated power carrier
*All modes have 'rich' content, not just callsign & locator

EI1KNH schedule (Testing from March 23rd 2022)
On the hour, 06-24hrs FT8 & cw
3mins past the Hour, 06-24hrs MSK144 & cw
6mins past the Hour, 06-24hrs RTTY & cw
7mins past the hour, 3 minute break
10mins past the hour, 06-24hrs FT8 & cw
13mins past the Hour, 24hrs carrier, 0db to 20db of attenuation in steps
14mins past the Hour, 24hrs WSPR
16mins past the Hour, 06-24hrs MSK144 & cw
19mins past the Hour, 06-24hrs RTTY & cw
20mins past the hour, 06-24hrs FT8 & cw
23mins past the Hour, 06-24hrs MSK144 & cw
26mins past the hour, 06-24hrs FT8 & cw
29mins past the Hour, 1 minute break
30mins past the hour, 06-24hrs FT8 & cw
33mins past the Hour, 24hrs carrier, 0db to 20db of attenuation in steps
34mins past the Hour, 24hrs WSPR
36mins past the Hour, 06-24hrs MSK144 & cw
39mins past the Hour, 06-24hrs RTTY & cw
40mins past the hour, 06-24hrs FT8 & cw
43mins past the Hour, 24hrs carrier, 0db to 20db of attenuation in steps
44mins past the Hour, 24hrs WSPR
46mins past the Hour, 06-24hrs MSK144 & cw
49mins past the Hour, 06-24hrs RTTY & cw
50mins past the hour, 06-24hrs FT8 & cw
53mins past the Hour, 24hrs carrier, 0db to 20db of attenuation in steps
54mins past the Hour, 24hrs WSPR
56mins past the hour, 06-24hrs SSTV (M1) & cw
59mins past the hour, 1 minute break

Wednesday, March 23, 2022

Canadian Arctic Research Station VY0ERC heard on 28 MHz - 19th March 2022


Saturday 19th March 2022: I was checking my 28 MHz log for WSPR when I noticed that I had heard the Canadian Arctic Research Station VY0ERC.

What is unusual about this is that the station is located on Ellesmere Island at 80 degrees north in the Canadian Arctic and this was on 28 MHz, not one of the lower HF bands.

In the last 5 weeks, it has only been heard on 28 MHz by 3 stations in the direction of Europe.

Local   (y-m-d) TX txGrid RX rxGrid MHz W SNR drift km
2022-03-19 15:58 VY0ERC ER60tb GM4VAC IO77xm 28.126127 0.2 -25 -3 3615
2022-03-19 15:38 VY0ERC ER60tb GM4VAC IO77xm 28.126062 0.2 -18 -3 3615
2022-03-19 15:18 VY0ERC ER60tb GM4VAC IO77xm 28.126089 0.2 -18 -3 3615
2022-03-19 14:58 VY0ERC ER60tb EA8BFK IL38bo 28.126176 0.2 -3 0 6545
2022-03-19 14:38 VY0ERC ER60tb EA8BFK IL38bo 28.1261 0.2 -3 -3 6545
2022-03-19 13:58 VY0ERC ER60tb EI7GL IO51tu 28.12604 0.2 -22 -3 4134

Station details... Eureka, Ellesmere Island, Nunavut, Canada. VY0ERC is currently operating out of the Polar Environment Atmospheric Research Laboratory (PEARL) Ridge Laboratory (RidgeLab) located on top of the hill at 80 degrees 3 minutes N and 86 degrees 25 minutes W at 600 m.a.s.l. 

The WSPR station was running just 200 milliwatts which makes it even more remarkable.


There are a few things that make this reception report unusual.

1) It was on 28 MHz and it's not usual to hear signals from so far north. The solar flux on the day was only 94 and most propagation paths are much closer to the equator.

2) The distance for me was 4,134 kms which suggests perhaps it was F2 propagation? If it was due to other propagation modes closer to the E layer than multiple hops would be required.

3) No distortion. Signals going across the polar regions tend to have an auroral flutter, something that is not conducive to WSPR.

4) Why the lack of stations hearing the signal in Europe? Why only two in the UK and Ireland?

Tuesday, March 15, 2022

First contact between Croatia and South Africa on the new 40 MHz band - 13th March 2022


Back in October of 2021, I reported on the first ever contact between South Africa and Slovenia on the 40 MHz band. See post HERE.

On the 13th of March 2022, there was another 'first' 40 MHz contact when when Milan, 9A2Y in Croatia managed to complete a successful FT8 contact with Willem, ZS6WAB in South Africa.

The distance was in the region of 7,585kms and it took place at around 12:36 UTC. This would have been an hour or so after local noon and the F2 layer was likely at it's highest ionization.

Considering it was a North-South path, I suspect that F2 and TEP propagation was involved without any need for a Sporadic-E extension at either end.

The solar flux on the 13th of March was at 123 which is a lot higher than last October when it was just 78 when the first ZS-S5 contact took place.


The screenshot above from 9A2Y shows the FT8 contact. As can be seen, the signal from ZS6WAB was  -5dB in Croatia which suggests that a contact on CW would have been possible but unlikely on SSB.

Equipment: I'm not sure what 9A2Y was using but ZS6WAB uses an old ICOM IC-706 for the 8m CW beacon with a 5-element YU7EF designed Yagi so I presume that is what was used.

Antenna stack at ZS6WAB with the 40 MHz Yagi at the top

Quite a number of European stations have reported hearing the ZS6WAB beacon on 40.475 MHz over the last week or two. Considering it's located halfway between the 28 MHz and 50 MHz bands, it is now hopefully giving early warning of potential 6m openings between South Africa and Europe.

As always, if you want more information on the new 8m band then check out the links on my 40 MHz page.

Saturday, March 12, 2022

Long path opening on 50 MHz between South America and Asia - 12th March 2022


12th March 2022: There seems to have been a really good opening on the 50 MHz band at about 01:00 to 04:00 from South America to the east of Asia (Thanks to N0JK on the tip off for this).

The map above from the PSK Reporter website shows the paths as reported for PY2XB in Brazil. The site shows the shortest path between two stations but I think in reality, the contacts from Brazil to Japan & Taiwan were all via long path.


Long Path V Short Path... The map above shows the situation. For someone in the south of Brazil, Taiwan is effectively the other side of the world and there isn't that much difference between short path or long path.

I'm subject to correction on this but I think this extensive opening on 50 MHz was around 21,000kms via the long path.

The map at the start of the post shows that there was a path also from Brazil to Hawaii at 01:58 UTC. The map above also shows where the daylight was at about 03:00 UTC. It was likely that there was strong TEP to the west of South America which likely played a factor in the opening.


This chart is a point to point HF propagation forecast and shows how likely an opening is on each of the bands from PY2XB in Brazil to BV3UF in Taiwan. As you can see, the long path on 28 MHz is very good from 24:00 to 06:00.

By contrast, the short path prediction is very poor at this time. The DX spots just report stations heard but no-one seems to mention short path or long path.

Propagation Mode???... As mentioned already, TEP (Trans-Equatorial Propagation) is likely to have been involved but how much? Was it partially TEP with the rest of the path via F2 propagation? Was there greyline and chordal propagation involved across the Pacific where the sun was setting?

Some seem to be very quick to explain every long distance opening as being simply TEP but remember that we're talking about a path of 21,000kms at 50 MHz. I'd suggest that it's a lot more complex than that.

Just for reference purposes, the solar flux on the day was about 127.

Notes... This was a reasonably good opening between two areas with a lot of 6m activity. The maps and data I have presented above is just a sample of this opening but it does demonstrate the distances achieved.

Thursday, March 10, 2022

18,700km contact on 50 MHz between ZL1RS and EA8DO - 9th March 2022


A few days ago, I reported on an 18,000km+ opening on the 7th of March on the 50 MHz band between New Zealand (ZL1) and the Canary Islands (EA8). The previous post is HERE

On the 9th March 2022, there was another similar opening on 50 MHz but this time, it was only between two stations. As the map shows above, ZL1RS on the northern part of New Zealand managed to complete a contact using FT8 with EA8DO in the Canary Islands.

This is a screen shot of the FT8 contact...


It looks as if the distance was in the region of 18,694 kms which is pretty remarkable for the 50 MHz band.

The opening on this occasion was at 21:07 UTC. The previous opening from ZL1 to EA8 on the 7th was between roughly 21:48 to 23:22 UTC.

Besides the distance, there are two things that I find interesting about this contact.

1) Time... For the opening on the 7th of March, it looks as if the path from ZL to EA8 was open before or at the start of the opening from EA8 to South America.

PSK Reporter log for EA8DO

For the opening on the 9th of March, it was the same. Why is this? Normally openings follow the sun moving from East to West. Why did the main opening from the Canary Islands to South America happen after the more westerly opening to New Zealand?

Will there be more openings like this from EA8 to ZL1 and will they all be at the start of the opening to South America?

2) No opening from ZL1 to South America... In the previous opening on the 7th, I noted how none of the four ZL1 stations in New Zealand heard or were heard by anyone in South America. 

On the 9th, the same happened again. Note the map at the top of the post from the PSK Reporter website. There are no FT8 reports from any station in South America despite the fact that the path crosses over the continent.

As I mentioned in the previous post, it's almost like chordal hop with the signal going between different parts of the ionosphere without reaching the ground.

Propagation Mode?... How exactly does a signal from the Canary Islands reach what is effectively the other side of the planet on 50 MHz? Trans-Equatorial Propagation is probably responsible for part of the path from the Canaries to South America but how did the signal get across the Pacific?

Someone suggested that antipodal focusing may be a factor in the opening but it's worth noting that this is 50 MHz, not 14 MHz. It may help but it doesn't explain what happens to make the path or paths possible.

It's good that we have two openings with some similarities but like all good science experiments, we need more openings and more data. Two data points isn't exactly 5-Sigma! 😄

The PSK Reporter log for EA8DO is shown below and you can see that ZL1RS was at the start of the opening.

Wednesday, March 9, 2022

VIDEO: Beginners guide to digital voice modes (D-STAR, DMR & FUSION) ...by Tim, GW4VXE


As part of the RSGB Tonight at 8 video series, Tim GW4VXE gave an interesting presentation on digital voice modes like D-Star, DMR & Fusion. This is really aimed at beginners or anyone who is not familiar with these modes.

The video is shown below. The presentation lasts from about 06:00 to 1:09:30 and there is a Q&A session after it which lasts until 1:43:40.

Tuesday, March 8, 2022

18,000km+ opening on 50 MHz between New Zealand & the Canary Islands - 7th March 2022


Monday 7th March 2022: There was an extremely long distance opening on the 50 MHz band between the north island of New Zealand (ZL1) and the Canary Islands (EA8) and in most cases, the distances were well in excess of 18,000kms.

If you consider that the circumference of the Earth is 40,000kms then this opening was close to the border line of what is short path or long path. See EA7 below.

Looking at the reports on the PSK Reporter website, the opening from ZL1 to EA8 occurred around 22:30 UTC. What's interesting is the EA8 stations had what looks like a TEP opening to South America about an hour later but it didn't seem to coincide with the ZL1 opening.

Questions... Like many openings, this one raises more questions than it answers.

1) Was part of the path due to TEP (Trans-Equatorial Propagation)? If it coincided with the opening to South America then yes but it seems to have been before it.

2) The map above for ZL1RS in New Zealand shows the shortest paths to the stations in the log on the PSK Reporter website. Was the path to EA8 direct or slightly skewed? Was the real path not actually over South America?

3) I checked the reports for the ZL1 stations and none of them show a South American station and yet, the opening was supposed to have gone over the continent of South America. There seems to have been an opening later from the south of New Zealand (ZL3) to Central America and Mexico. Was the real EA8-ZL1 path skewed and further north?

4) Propagation mode?... I would think that a large part of the path was due to chordal mode without the signal hitting the ground.


Did the signal pass over South America by chordal hop without reaching the ground?

5) How did the signal get across the Pacific which is a feat in itself?

6) How much of the path was due to F2? Sp-E? TEP?

Answers... If we were at the peak of the solar cycle then it may not be a big deal. But we're not, we're just on the way out of solar minimum, the solar flux is just 118 and this is up at 50 MHz. 

I think at best, we can make educated guesses but I think that's all we can do. Whatever the reason for the opening, it's probably no accident that this opening occurred near the equinox and it's likely to happen again.

Reports...These are some of the reports from the PSK Reporter website...

ZL1RS...
Txmtr Rcvr Band Mode Distance Time (UTC)
ZL1RS EA8/DF4UE 6m FT8 18986 km 22:23:29
ZL1RS EA8AXT 6m FT8 18828 km 22:19:29
ZL1RS EA8RH 6m FT8 18745 km 22:35:56
ZL1RS EA8TL 6m FT8 18742 km 22:34:56
ZL1RS EA8TH 6m FT8 18694 km 23:19:26

ZL1SG...
Txmtr Rcvr Band Mode Distance Time (UTC)
ZL1SG EA8/DF4UE 6m FT8 19019 km 22:06:56
EA8AQV ZL1SG 6m FT8 18929 km 21:48:11
ZL1SG EA8AXT 6m FT8 18861 km 22:00:59
EA8AXT ZL1SG 6m FT8 18861 km 21:49:41
ZL1SG EA8RH 6m FT8 18777 km 22:33:56
EA8RH ZL1SG 6m FT8 18777 km 22:31:41
ZL1SG EA8TL 6m FT8 18774 km 22:34:59
EA8TL ZL1SG 6m FT8 18774 km 22:31:41
EA8TH ZL1SG 6m FT8 18725 km 23:17:41

ZL1RQ... Note CN9YZ in Morocco & YS1AG in El Salvador...
Txmtr Rcvr Band Mode Distance Time (UTC)
ZL1RQ CN8YZ 6m FT8 19768 km 20:52:26
ZL1RQ EA8/DF4UE 6m FT8 19019 km 22:10:56
ZL1RQ EA8AXT 6m FT8 18861 km 21:36:29
EA8RH ZL1RQ 6m FT8 18777 km 22:30:41
ZL1RQ EA8RH 6m FT8 18777 km 22:11:29
ZL1RQ EA8TL 6m FT8 18774 km 22:29:29
EA8TL ZL1RQ 6m FT8 18774 km 22:17:41
EA8TH ZL1RQ 6m FT8 18725 km 23:22:41
YS1AG ZL1RQ 6m FT8 11511 km 01:31:41

ZL1AKW...
Rcvr Band Mode Distance Time (UTC)
EA8TH 6m FT8 18318 km 23:17:26

EA5GJ reports the following... "ZL1RS receives 3 decodes from EA7HCL on 50 MHz for the long step in an intense opening this afternoon with South America, we are facing the first Pacific-Europe Long Path openings on 6 meters, in many years... #50MHz #Propagation". 
Note that none of these appeared on the PSK Reporter site.

EA7HCL is in the far south of Spain and this opening for him was actually long path. For the EA8 stations, it was short path.

These are the spots from the DX Cluster for the evening / morning. As you can see, all of the activity seems to have been via digital modes like FT8 on 50.313 MHz...

Spotter Freq. DX Time Info Country
ZL3OZ 50313.0 YS1AG 00:36 08 Mar wkng PY. -18 El Salvador
ZL3OZ 50313.0 XE1HG 00:20 08 Mar part QSO tnx. Mexico
XE1MEX 50313.0 ZL3OY 00:04 08 Mar Tnx QSO New Zealand
XE1MEX 50313.0 ZL3OZ 00:00 08 Mar Tnx QSO New Zealand
ZL3OZ 50313.0 XE1MEX 23:30 07 Mar CQ at -6 through -19 Mexico
EA8TH 50313.0 ZL1RS 23:23 07 Mar FB Signal. TU Bob New Zealand
ZL1RS 50313.0 EA8TH 23:23 07 Mar tnx qso Canary Islands
EA8RH 50313.0 ZL1RS 22:17 07 Mar tnx qso new one New Zealand
ZL1RS 50313.0 EA8RH 22:09 07 Mar tnx qso Canary Islands
ZL1RS 50313.0 EA8TL21:48 07 Mar tnx qso Canary Islands
EA8TL 50313.0 ZL1RS 21:45 07 Mar calling you ft8 New Zealand
ZL1RS 50313.0 EA8AQV 21:32 07 Mar tnx QSO Canary Islands
ZL1RS 50313.0 EA8/DF4UE 21:26 07 Mar Canary Islands
ZL1RS 50313.0 CN8YZ 21:01 07 Mar rx only, calling ZL1RQ Morocco
ZL1RS 50313.0 EA7HCL 20:18 07 Mar 3 decodes ... Spain

Wednesday, March 2, 2022

Zoom Presentation: Amateur Radio - A Life Long Technical Hobby - 10th March 2022

From Engineers Ireland: Hosted by the Electronic and Computing division in collaboration with the South Dublin Radio Club, this webinar with Adrian Connor and Jeffrey Roe will discuss ‘Amateur Radio - A Life Long Technical Hobby’. 

Amateur Radio is a rich and diverse hobby and an exciting mix of science, communications, engineering and fun. 

It can be enjoyed by all ages and a wide range of abilities. 

This presentation aims to showcase the hobby and how to get started.

Link HERE

Note that the presentation is free and open to anyone.

Monday, February 28, 2022

Opening to California on 28 MHz - Sun 27th Feb 2022


Sunday 27th February 2022: For the last two weeks, conditions on the 10m band seemed to be pretty mediocre with relatively few good openings to the United States. That changed on the 27th of February with a very good opening to California.

The map above shows the WSPR signals heard on 28.1246 MHz. As well as the northerly path to California, there were signals from the German Antarctic research station DP0DVN and the German Antarctic research ship DP0POL.

It's safe to say that if this map was for FT8 then there would be a LOT more signals. WSPR is a very good beacon mode but there is a lack of stations in many countries.

Beacons... These were the beacons heard in a short space of about 20 minutes.

Spotter Freq. DX Time Info Country - Pwr
EI7GL 28300.0 K6FRC/B 19:13 27 Feb IO51TU<F2>CM97HP United States - 100w
EI7GL 28298.0 K5TLL/B 19:12 27 Feb IO51TU<F2>EM51GG United States - 25w
EI7GL 28244.3 KC4EOG/B 19:11 27 Feb IO51TU<F2>FM05HI United States - 4w
EI7GL 28222.5 KA4SEY/B 19:07 27 Feb IO51TU<F2>EM95VP United States - 3w
EI7GL 28222.6 N1NSP/B 19:05 27 Feb IO51TU<F2>FM17RD United States - 10w
EI7GL 28206.1 KM4NBB/B 19:04 27 Feb IO51TU<F2>EM84BM United States - 5w
EI7GL 28200.0 W6WX/B 19:01 27 Feb IO51TU<F2>CM97BD United States - 100w

The two stations in bold were in California which means that it would have been possible to work someone on CW and it wasn't just a case of weak signals buried in the noise.

The solar flux on the day was only 97 so I'm not sure why conditions were so good.

Saturday, February 26, 2022

New 40 MHz beacon in Washington State - Feb 2022


Halden Field, NR7V is one of the few US radio amateurs who managed to get a special experimental permit to operate on the 40 MHz band and was allocated the callsign WM2XCW back in the second half of 2021.

He has now announced that he has an experimental CW beacon is on the air on the 40 MHz band.

He writes..."The purposes of this beacon are:
1.  To enable detection of propagation openings on this band that would not be detected by reception of WSPR transmissions.
2.  To enable analytical measurements of such detected propagation, including
 a.  signal strength and its variations
 b.  wavelength shift and broadening during propagation
"

This beacon transmits on 40.6630 MHz which is about 400 Hz below the 200Hz of spectrum used at present for WSPR transmissions.

This will allow people to listen both for the new beacon and to WSPR transmissions at the same time. The same method is used for QRSS transmissions on the HF bands and is very effective.

The beacon will transmit once every 10 minutes, following its WSPR transmissions.  It sends identifying information in 18 wpm Morse code and then a carrier for 30 seconds.  The beacon location is at Point Roberts in the far north-west of Washington State and the locator square is CN88. 

The beacon uses a QRP-Labs U3S with a 10W Linear PA and the antenna is a dipole about 9m above ground level. It is orientated to favour transmission to the NW and SE.


The map above shows the location of the beacon in the NW of the United States. The lobes of the antenna are also shown going NW & SE.

Most of the reception reports are likely to come from the western half of the USA and in the region of 1000-2100 kms and the propagation mode will be Sporadic-E. At the peak of the Sp-E season in late May and all of June, there will be double hop Sp-E openings to the eastern part of the USA in the range of 2600-3500kms.

It will be very difficult to hear the beacon in Europe as it's a northerly path and it's in the null of the dipole.

There is the possibility of some very interesting openings to Japan with multi-hop Sp-E or via Sp-E & TEP to South America. The biggest challenge here is getting someone interested enough to try and listen.

As we head towards the peak of the solar cycle, some F2 openings are likely on the 40 MHz band and it will be interesting to see if the beacon is heard on the east coast of the United States.

Any reception reports should be sent to NR7V or on the DX-Maps website.

Link...
1) For more info on the 8m band, check out my 40 MHz page.

Thursday, February 24, 2022

Video: How to win a VHF radio contest - Northern Black Forest Group DR9A 2017


In 2017, the Northern Black Forest Group DR9A in Germany won the multi-op section in the IARU Region 1 2m contest. This is held in September every year.

The photo above shows the 144 MHz antenna system. Lower down on the mast, there are 4 high stacks of medium gain 6-element Yagi's pointing in fixed directions every 45 degrees. At top of the mast, there is an array of 4 high gain 17-element Yagi's for when more gain in a particular direction is needed.

These are the top 20 stations in the results...


The DR9A contest station operated from the JN48EQ in the south-west corner of Germany. As you can see from the map below, it is pretty much in the centre of western Europe with stations in all directions.


The short video below gives a flavour of what the contest was like...


Link...
1) DR9A website

Wednesday, February 23, 2022

Ongoing DRM tests at 86.5 MHz in Copenhagen - 2022


I came across an interesting news report recently about an Digital Radio Mondiale (DRM) test that is currently taking place on 86.5 MHz in Copenhagen, the capital of Denmark.

While several countries have DAB systems up and running, some are carrying out test in or around Band 2 (88-108 MHz) and seeing if digital DRM signals could co-exist with analogue FM signals.

The DRM test in Copenhagen started on the 13th of October 2021 and runs until the 1st of August 2022. There is an option of extending this to the 30th of August 2023.



This is a collaborative project organised by Open Channel, an independent Danish network operator in Copenhagen, with Canadian Nautel (transmitter), German RFmondial (DRM modulator & measuring instruments) & Fraunhofer IIS (Content server) and Swedish Progira (network planning).

The project is supported by Gospell, NXP, partners in Denmark and other non-DRM Consortium members like Bauer Media (supplying content) and Kathrein (antenna).

The frequency allocated is 86.5 MHz and with a bandwidth of 200 kHz, which makes room for two DRM signals. Each DRM signal has a capacity of 186.4 kbps (16QAM, CR 5/8) and accommodates three audio channels and multimedia services, so for the 200 kHz a total of six digital radio stations can thus be broadcast. Further down the line there are ambitions to involve the Öresund region (commonly known in English as the Sound, a strait which forms the Danish–Swedish border) and possibly collaborate with another FM station on the Swedish side.

The height of the antenna is 88m and the terrain elevation is 8m (more details below). In phase 1, Open Channel will test single DRM channel with 120 Watt ERP. The coverage probability for mobile reception in Greater Copenhagen is illustrated in the picture below...


The trial on the 86.5 MHz frequency has also been approved by the Swedish Post and Telecom Agency. The fact that the experiment is done a bit below the regular FM band (band II 87.5-108 MHz) is due to the fact that there is no space in this dense region. The new receivers for FM/DRM can handle 64-108 MHz.

We are working on expanding the FM band in Denmark from 85 – 87.5 MHz, so that the Danish FM band goes from 85 to 108 MHz and thereby create more space to introduce digital radio on the FM band”... says Kenneth Wenzel, project manager and director of Open Channel.

This DRM field trial offers a unique opportunity to showcase the versatility of DRM-FM by packing two DRM signals within a single FM channel allocation demonstrating optimal spectral efficiency for DRM using a Nautel VS transmitter.”... says Philipp Schmid, CTO at Nautel.

Source... https://www.drm.org/drm-for-fm-in-the-heart-of-europe/

Tuesday, February 22, 2022

New DRM tests on 954 kHz planned from the Czech Republic in 2022


It was announced recently that České Radiokomunikace (CRA) in the Czech Republic has obtained a license from the Czech telecoms regulator (ČTÚ) to conduct a DRM test on 954 kHz in the city of České Budějovice in the south of the country.

The transmitter will have a power of just over 3kW which means it may be heard across Europe at night. The 954 kHz is one of the medium wave frequencies where the (AM) programs ČRo Dvojka and ČRo Plus were broadcast until the end of 2021.

CRA wants to use the test, among other things, to determine the scope and energy efficiency of broadcasting in the DRM standard. Both the 16 QAM and 64 QAM, the two common modulation schemes in DRM, will be tested. The operator will use an existing Transradio medium wave transmitter into which they will integrate a digital modulator.

The DRM system has long been touted as the digital replacement for AM on the Medium Wave and Short Wave bands. In 2003 and 2006, the Czech public broadcaster ČRo conducted a series of DRM tests on medium and short wave so these new tests should be seen in that light.

DRM has gained a foothold in countries like India but the take up has been slow elsewhere in the world.