Showing posts with label 24 MHz. Show all posts
Showing posts with label 24 MHz. Show all posts

Tuesday, November 7, 2023

Skewed path on the 24 MHz band between Europe and the Pacific - Nov 2023


I found this item in the most recent GB2RB news bulletin from the RSGB of interest... "Phil, GU0SUP reports working Jan, E51JAN on the North Cook Islands on 12m FT8 Fox and Hound mode at around 1630UTC. He said that, as it was almost dark, he didn't expect to hear anything, but had a good copy on him at 190 degrees, so gave him a call. He came straight back.

Phil said that this was a big surprise, and he is not sure how it worked. It was quite a skewed path, with pretty much no copy on the real headings, short or long path."

The map above roughly shows the various paths for this 24 MHz (12m) band contact. From GU0SUP's location on the island of Guernsey, the short path goes up over Greenland. The long path would go in the opposite direction (148 deg) and down over Africa.

The reported path of 190 degrees takes the signal down into the Atlantic region between South America and Africa.

Commentary... The QRZ page for GU0SUP says that he is using a TGM Communications MQ26 mini-beam which would have a very broad beamwidth. We can't know for certain if the actual path was 190 deg or not. 

All we can take from the report is that it wasn't short path or long path but was skewed in roughly a south-westerly direction.


The image above is one I made before for an opening on the 50 MHz band between Europe and the South Pacific with a skewed path. Post HERE

This most recent report for the 24 MHz may well be the same? Did the signals get trapped in the Trans-Equatorial Propagation (TEP) region and allow the skewed path westwards from Europe to the Pacific?

Skewed paths should be even more common and pronounced at a lower frequency like 24 MHz as compared to 50 MHz.

I suspect that the TEP region has a huge impact on signals that most of us don't appreciate. On the HF bands, so many people are using omni-directional antennas or beams with a very low beamwidth that skewed paths are not obvious unless they are at almost right angles to the short and long paths.

Food for thought... How many people on the HF bands are looking for DX-peditions or DX stations on the textbook short or long paths when they should be thinking outside the box and looking for skewed paths?

Tuesday, December 28, 2021

Long path echoes on the 24 MHz band (VO1FOG) - Dec 2021


Larry, VO1FOG in Newfoundland, Canada has noticed a number of strong echoes on SSB signals on the higher HF bands recently and he has been able to confirm that this was due to long path echoes.

There is a nice audio sample below but first, let's set out what is happening.

The map above shows the location of VO1FOG in Newfoundland and VA2AM is 1560kms to the west near Montreal.

VA2AM is on 24.937 MHz and is beaming towards Europe. VO1FOG in Newfoundland is beaming east as well, listening to him for over an hour and the signal has a distinctive echo. The direct short path signal at 1500kms is below the F2 MUF for 24 MHz and is present but weak.

VO1FOG finally manages to catch the attention of VA2AM and VA2AM turns his antenna to the west to check the long path.

The signal with the echo is when VO1FOG is hearing both the short path and long path signals. You'll notice that when VA2AM turns his beam, the long path signal is much stronger and the echo disappears.

As VO1FOG points out, the long path signal has to travel almost right around the globe with a distance of about 38,500kms.

Analysis... The solar flux is currently around the 120-130 mark and the higher HF bands are now beginning to open. It's likely that a large part of the long path was probably due to chordal hop propagation with the signal going between different parts of the ionosphere and not touching the ground.

It's also worth pointing out that as far as I know, both VO1FOG and VA2AM are using directional beams up on towers and as such, both would have a low angle of radiation. These type of signals may not be so obvious on simple antennas like dipoles at a low height.

Questions... As is often the case, this example of long path echoes raises more questions..

1) Is this happening on the 28 MHz band at the moment? Is anyone hearing strange echoes?

2) What about FT8 signals? Does the echo destroy their ability to decode? With FT8 signals, it's all or nothing. It either decodes or it doesn't. With CW or SSB, the human brain can piece together what was being sent but what happens with a digital mode? Will the long path echo mess up the signal?

3) Is the 'long path' really a simple long path? For example, let's say someone with a transmitter sent a series of pulses like say a train of CW pulses with maybe a second or two in between each one.


The receiving station could then look at the received audio with an oscilloscope. In theory, the scope would trigger on the first short path signal and the long path signal would be seen as an individual peak in between the short path peaks.

But would it? Would there be more than one 'long path' peak? Would there be a chance of seeing secondary peaks if the signal went twice around the world? How would the peaks change as the antenna is turned?

The beauty of an oscilloscope it that it would show things that you can't hear and it would also show the delay of the signal in milliseconds allowing you to calculate the distance traveled. 

Wouldn't it be nice if there were CW beacons like this to allow people to carry out experiments?

There are probably many more questions and experiments but these are the ones that I thought of while I was listening to the recordings.

***

Here are a few more examples from Larry, VO1FOG...