Showing posts with label VE1VDM. Show all posts
Showing posts with label VE1VDM. Show all posts

Wednesday, January 10, 2024

2024 10m QRSS Challenge: - VA1VM 10th Jan


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year.

QRSS are very slow morse code transmissions where the dots and dashes are several seconds long and the signals are decoded by looking at a waterfall display on a screen rather than listening to the signal.

The QRSS signals are usually just below the WSPR signals on the amateur radio bands. This means it's possible to have your PC decoding WSPR signals up around 1500 Hz while you look at the QRSS signals about 500 Hz or so lower in the audio spectrum at the same time.

2024 #2 - VA1VM... The first signal I captured in 2024 was from Vernon, VE1VDM in Nova Scotia, Canada back on the 8th of January. This is outlined in this previous post.

Conditions on the 28 MHz band were better on the 10th of January and the 'VDM' QRSS signal was in again but stronger as can be seen above. For this beacon, Vernon was using a QrpLabs U3S with low pass-filter into a QrpLabs power amplifier delivering 1-watt on 10m. The antenna was ground mounted Hustler 6BTV vertical.

In the last 24-hours, Vernon has put a second QRSS transmitter on the air with the callsign VA1VM. You can see this as a weaker signal in the image above.

The VA1VM signal is from a 150 milliwatt transmitter into a  Hustler 10m 1/4 wave resonator mounted on a 1.37-metre long Hustler mast extender. It really is amazing that a 0.15 watt signal can make it across the Atlantic.

Both beacons are located in the town of Truro in Nova Scotia and are just a few kms apart. The antenna on my side was a simple CB type half-wave vertical.


The map above shows the location of the transmitter and receiver. The distance is about 4000kms which is ideal for 1-hop of F2 layer propagation.

Even though it's the same person, it's a second QRSS signal. That brings the QRSS tally so far for 2024 up to 2-callsigns & 1 DXCC.

08 Jan 2024: VE1VDM
10 Jan 2024: VA1VM

Monday, January 8, 2024

2024 10m QRSS Challenge: - VE1VDM 8th Jan


As part of a challenge for 2024, I've decided to see how many QRSS signals I could capture on the 28 MHz band during the year.

QRSS are very slow morse code transmissions where the dots and dashes are several seconds long and the signals are decoded by looking at a waterfall display on a screen rather than listening to the signal.

The QRSS signals are usually just below the WSPR signals on the amateur radio bands. This means it's possible to have your PC decoding WSPR signals up around 1500 Hz while you look at the QRSS signals about 500 Hz or so lower in the audio spectrum at the same time.

2024 #1 - VE1VDM... The first signal I captured in 2024 was from Vernon, VE1VDM in Nova Scotia, Canada.

Vernon was using a QrpLabs U3S with low pass-filter into a QrpLabs power amplifier delivering 1-watt on 10m. The antenna was ground mounted Hustler 6BTV vertical.

The antenna on my side was a simple CB type half-wave vertical.


The map above shows the location of the transmitter and receiver. The distance is about 4000kms which is ideal for 1-hop of F2 layer propagation.

So that's the QRSS tally so far for 2024... 1-callsign & 1 DXCC.

Friday, November 3, 2023

Backscatter on 28 MHz - 2nd Nov 2023


For well over 12-months, I have had my radio tuned to the WSPR frequency of 28.1246 MHz on the 10m band and I feed the decoded signals up to the WSPRnet website.

While I can see the WSPR signals clearly on the waterfall display, I can also see the very slow morse QRSS signals as well just a few hundred Hz below.


The image above shows the QRSS signals I could see on the 2nd of November 2023 and the locations of the stations are shown in the map at the start of the post.


The screenshot above shows a good capture of AE0V in the USA at about a distance of 6000kms. Ned, AE0V reports using a solar powered transmitter with no battery storage running 100mW into a 1/4 lamba stainless whip about 8m above the ground.

The signals from the USA and Canada are easily explained as they are via F2 layer propagation. The signals I find unusual are the ones from the England which are in the region of 500 to 650kms.

The trace from the 0.2-watt signals of G0PKT and G0MBA are there nearly all the time when the band is open. It's not F2 propagation in the usual sense as it's too close and it's not Sporadic-E.


I believe that it's backscatter just like what the military use for their over the horizon radar systems (OTHR). 

In this case, the 28 MHz band is open with F2 layer propagation and the signals from G0PKT & G0MBA are being reflected back towards my location from some distant point.

As an example of how consistent these signals are, I have decoded the WSPR signal of G0PKT about 1,000 times in the last 3-weeks. And that's a signal that's supposed to be in my 'skip zone' where it's supposed to be hard to reach.

There's nothing new about this, it's just that in this modern age of weak signal modes and waterfall displays, we can now see these very weak signals more clearly. 

If you're using FT8 on the higher HF bands and you see lots of reports from stations that about 200-600kms away then F2 backscatter is probably the reason.

Tuesday, November 1, 2022

QRSS signals heard on 28 MHz - 1st Nov 2022


Every day, I leave my HF radio on the 28.1246 MHz to listen for WSPR signals. My PC then decodes these and sends the reception reports up to WSPRNet website for others to see.

The QRSS (very slow morse code) band is just a few hundred Hz below the 10m WSPR band and I noticed in the WSPR waterfall that two QRSS signals were present so I had a look.

The image above shows the QRSS signals that I was hearing over a period of about 20-25 minutes on the 1st of November 2022.

VE1VDM in Canada and G0PKT in the east of England had reasonable signals and they were the two I had noticed initially. G6GN in England is also present but quite weak. There are other very weak QRSS signals as well but I was unable to ID these.

The locations of the relevant stations are shown on the map below.


VE1VDM in Nova Scotia is 4000kms from my location and is easily explained as it's an ideal one F2 layer hop away on 28 MHz.

The signals from G6GN at 400kms and G0PKT at 650 kms are not so easily explained. If it was the Summer months then we might think it was Sporadic-E but, this was the first of November AND G0PKT is pretty much there all of the time every day when the band is open.

I suspect that I am receiving these signals via F2 layer backscatter. In the past (pre digital days), backscatter signals were pretty much buried in the noise with the SSB and CW modes. Now however, WSPR has no problem decoding signals that are 20dB below the noise level and I can see QRSS signals which are in the region of -15 to -20dB.

I think a lot of those 'close in' signals that we are now seeing on WSPR or FT8 on 28 MHz are in reality via backscatter.


You can see from the map above all of the WSPR stations I heard on 28 MHz on the 1st of November. Meteor Scatter? Forward scatter via Sporadic-E? I'm opting for F2 layer backscatter.

I'm using an omni-directional vertical on 28 MHz so I can't beam headings. Maybe someone else wants to do some tests? See which direction those 'close in' signals are strongest. The direct path OR beaming in some other direction at a potential back-scatter point?

Saturday, June 19, 2021

Trans-Atlantic opening on 28 MHz (QRSS signals from VE1VDM & N8NJ) - 19th June 2021

19th June 2021: After getting an email from Vernon VE1VDM, I fired up the Spectrum Lab programme and managed to grab TWO trans-Atlantic QRSS signals on 28 MHz...


(QRSS are morse code signals sent very slowly over a period of several minutes. This is an analogue method of reading signals that are buried in the noise)

It was probably the strongest capture I've got to date of VE1VDM and the first time I've managed to capture N8NJ. His power was 2-watts.

N8NJ is also the longest distance QRSS signal on 28 MHz I've captured as well. His power was 1-watt.

These are the WSPR reports around that time so you can compare what the QRSS signal looks like against the WSPR signal report.

2021-06-19 13:20 VE1VDM FN85ij EI7GL IO51tu 28.126151 2 -15 0 4001
2021-06-19 13:20 N8NJ EN81go EI7GL IO51tu 28.126069 1 -20 0 5574
2021-06-19 13:30 VE1VDM FN85ij EI7GL IO51tu 28.126151 2 -13 0 4001
2021-06-19 13:30 N8NJ EN81go EI7GL IO51tu 28.12607 1 -24 0 5574
2021-06-19 13:40 VE1VDM FN85ij EI7GL IO51tu 28.126151 2 -15 0 4001

VE1VDM at -13 to -15dB was at a level which would be barely detectable by ear. It's too weak for CW sent at normal speed.

N8NJ at -20 to -24dB was buried well into the noise.

In truth, there's nothing that remarkable about hearing Canada or the USA on 28 MHz during the peak of the Summer Sporadic-E season but it was still nice to get a screen capture of two low power stations from the other side of the Atlantic.

Sunday, May 16, 2021

First Trans-Atlantic WSPR signal on 28 MHz - 15th May 2021


Saturday 15th May 2021: The last few days have been very good for Sporadic-E propagation with the 28 MHz band staying open for most of each day. The 15th of May started with the band being open from the previous day and finally closed for me at 22:44 UTC. I heard 685 WSPR transmissions from 94 stations during the day.

This was the first day of the 2021 season that I heard a 28 MHz WSPR Trans-Atlantic signal. I got just one decode of Vernon, VE1VDM's signal in Nova Scotia. Vernon was using a QRPLabs U3S transmitter with a 4-watt amp. His antenna was a full size Windom.

UTC (y-m-d) TX txGrid                 RX      rxGrid MHz W SNR drift km
2021-05-15 11:50 VE1VDM FN85ij EI7GL IO51tu 28.126127 1 -22 0 4001


There was also plenty of short skip around with 18 stations from the UK heard on the band.

UTC (y-m-d) TX txGrid RX rxGrid MHz W SNR drift km
2021-05-15 11:38 EI2SBC IO63dj EI7GL IO51tu 28.126077 5 -26 -1 177
2021-05-15 10:32 G6PSZ IO82 EI7GL IO51tu 28.126141 0.2 -23 -1 370
2021-05-15 08:48 G8CQX/A IO80jq EI7GL IO51tu 28.126048 10 -28 0 382
2021-05-15 10:28 MW0GRJ IO83kf EI7GL IO51tu 28.126042 5 -10 0 386
2021-05-15 07:52 G0EKQ IO83pi EI7GL IO51tu 28.126076 5 -24 1 417
2021-05-15 09:20 M0SDM IO92pv EI7GL IO51tu 28.126006 2 -13 0 533
2021-05-15 09:48 G8IOA IO92rp EI7GL IO51tu 28.126097 5 -9 -1 540
2021-05-15 10:02 M7SBL IO93rf EI7GL IO51tu 28.126095 0.01 -23 0 551
2021-05-15 08:28 M0GBZ IO91vv EI7GL IO51tu 28.126144 0.5 -23 0 560
2021-05-15 09:40 G4VME JO02cg EI7GL IO51tu 28.12601 0.2 -23 -1 588
2021-05-15 08:12 G8AXA JO01bi EI7GL IO51tu 28.126112 0.5 -18 -3 589
2021-05-15 00:38 G4KPX JO02dj EI7GL IO51tu 28.126089 0.005 -7 1 594
2021-05-15 08:18 M0XDC JO01dq EI7GL IO51tu 28.126084 5 -6 -1 596
2021-05-15 08:18 M0PWX JO01ij EI7GL IO51tu 28.126154 2 -11 0 629
2021-05-15 09:40 G4NJJ JO02 EI7GL IO51tu 28.126075 0.2 -24 -2 640
2021-05-15 05:08 G0MBA JO01 EI7GL IO51tu 28.126049 0.2 -19 0 645
2021-05-15 05:08 G0PKT JO01mt EI7GL IO51tu 28.126061 0.2 -14 0 647
2021-05-15 05:08 G0FTD JO01mi EI7GL IO51tu 28.126118 0.2 -20 0 652
2021-05-15 09:08 GM4SJB IO88ba EI7GL IO51tu 28.126071 5 -13 0 743

EI2SBC: I managed to get two decodes from EI2SBC (Shannon Basin Radio Club) in the centre of Ireland. 
2021-05-15 11:38 EI2SBC IO63dj EI7GL IO51tu 28.126077 5 -26 -1 177 
2021-05-15 11:58 EI2SBC IO63dj EI7GL IO51tu 28.126078 5 -23 -4 177 


At -23dB and -26dB, the signal was really buried in the noise and at a level well below what is audible to the ear. As before, it's hard to be sure of the mode of propagation but I suspect it may have been either very short Sporadic-E or Sporadic-E back scatter.

Monday, June 1, 2020

QRSS reception reports on 28 MHz - Fri 29th May 2020

Friday the 29th of May 2020 was an extraordinary day with widespread Sporadic-E across Europe. While the various VHF bands up to 144 MHz were open, I spent some time listening for QRSS signals (very slow visual morse code) on 28 MHz.

To put the European stations heard in context, first see the map with distances below...


a) First Grab... The short skip on 28 MHz started early and I heard the usual stations near London, roughly 650kms.


M0BMN is a lot further west and as he is just 430kms away, I had trouble getting a good trace of his QRSS signal.

b) Doppler... This is another screen grab later on. Note the double trace on some of the signals.


Pay special note to the signal from G0FTD. On the left, it's weak but clear. On the right, there are two distinct signals from him. The upper trace is steady and is almost as if that signal is coming from a stationary Sporadic-E cloud. The lower trace starts to diverge more over time as if it that signal was coming from something moving at speed and creating doppler shift.

I suspect it was coming from a Sporadic-E cloud that was in motion and half-ways through the second trace, it either reached a point or ionization level that it no longer supported propagation.

The other theory might be that it was aircraft scatter although I still prefer the moving Sp-E cloud theory.

c) Iceland... There was also some good Sporadic-E conditions to the north and I got a screen grab from TF3HZ in Iceland for the first. time.


I also noted a signal up higher in the band but I'm unsure who it is? The amount of Frequency Shift Keying (FSK) seems to be lower than the rest.

(Update: The mystery signal is LB3AH in Oslo, Norway).

d) TF3HZ & M0GBZ clashing... In this screen grab, note the signal from TF3HZ. At first, he is in the clear and on his own. Then the short skip to the east improves and I note that TF3HZ in Iceland and M0GBZ near London are actually on the same frequency.


On a band where there are just 10 or so Hertz between stations, it's easy to end up on the same frequency as someone else especially if they are from a different area.

(Update: The mystery signal at the top is probably an image of G0FTD. The mystery signal at 620 Hz is LB3AH in Norway)

As this second grab shows, they were clashing for quite a while as the conditions were excellent.


e) M0GBZ in the clear again... In this grab, you can see how on the left, TF3HZ in Iceland and M0GBZ to the north of London are still clashing. I then lose the path to Iceland and the signal from M0GBZ becomes clear again.


f) Trans-Atlantic... VE1VDM... All of the QRSS signals from Europe are via one-hop Sporadic-E. To cross the Atlantic, the signal needs several Sporadic-E hops.

As I'm on the north-west edge of Europe, I'm within two Sporadic-E hops of Vernon, VE1VDM in Nova Scotia in Canada.


I first noticed VE1VDM's signal on WSPR on 28.1246 MHz and he transmits a QRSS signal as well just below it. He sends the letters VDM and the weak signal is shown below...


Vernon also transmits a QRSS signal on 28.0008 MHz where the European stations are...


And that mysterious signal again?!?

During another grab, there was a brief opening to G6NHU near London and I could see that VE1VDM was almost on the same frequency.


Towards the bottom of the screen, there is a very faint record of the signal from OK1FCX in the Czech Republic. He sends a signal that has three levels so it can be easy to identify even if the signal is too weak to decode.

In conclusion... Another good day for QRSS signals on 28 MHz and it's interesting to note the way signals change over time. As noted in a previous post, I believe QRSS is the only mode where you can actually see the propagation changing visually.

At this stage, I'm running out of new stations to catch! I think I have seen most of the European stations at this stage.

Links...
1) Report from MW1CFN for 28 MHz QRSS signals heard in NW Wales on the same day.

Monday, May 25, 2020

First trans-Atlantic QRSS signal of 2020 on 28 MHz - Mon 25th May 2020


Monday 25th May 2020. For a change, I left the radio on the WSPR frequency of 28.1246 MHz this morning to see what could I hear. At the time, there seemed to be some unusual propagation in that I was hearing Iceland to the north-west.

Then I got two decodes of the WSPR signal from Vernon, VE1VDM in Nova Scotia, Canada!

Timestamp          Call MHz SNR Drift Grid Pwr Reporter RGrid km az
 2020-05-25 11:30 VE1VDM 28.126118  -24 -2 FN85ij 2 EI7GL  IO51tu  4001 59 
 2020-05-25 11:20 VE1VDM 28.126118 -22 -1 FN85ij EI7GL  IO51tu 4001 59 

While 28.0008 MHz is the usual QRSS frequency on 10 metres, some stations transmit right next to the WSPR frequency of 28.1246 MHz so that receive stations can listen for both WSPR and QRSS signals without changing frequency.

It just so happened that I had the SpectrumLab audio analyzer programme running as I often use it to check the frequency of beacons on 28 MHz. When I looked, I could see the QRSS signal (very slow morse) from VE1VDM but it was slightly drawn out as I was using the 'QRSS 1' option. I switched to QRSS 3 and the screen grab is shown above.

I suspect the signal from Vernon may have been at its best when I was hearing the WSPR signals. I'd guess that the QRSS signal used to generate the plot shown above is certainly not stronger than the -22dB or -24dB WSPR signal.

VE1VDM was using a QRP Labs U3S and 5 watt PA combo sending 4 watts into a full size Windom hung as an inverted V at about 30' AGL at apex, I was using a vertical half-wave for 28 MHz about 4 metres above ground level.

Mode of Propagation???... How did this QRSS signal cross the North Atlantic?


A few days ago, VE1VDM had been heard on WSPR in Luxembourg and Germany, a distance of about 5000 kms. This was most probably triple hop Sporadic-E... i.e. 1700kms x 3 hops. The second hop signal that day was probably landing somewhere in the ocean about 600kms to the west of Ireland.

For the trans-Atlantic opening today, I think I was hearing VE1VDM via double hop Sporadic-E i.e. 2 x 2000km hops. It's likely that the signal may have reached only Ireland and the western part of the UK as that's close to the limit for two hops on 28 MHz.

For more information on QRSS activities, there is an active group HERE