Showing posts with label EI2IP. Show all posts
Showing posts with label EI2IP. Show all posts

Thursday, February 1, 2024

40 MHz reception report from Bill Smith, W1-7897 for Jan 2024


Thanks to short wave listener Bill Smith, W1-7897 for sending on his reception report for January 2024.

Bill who is located near Douglas in Massachusetts in the United States is using a Yaesu FT-847 as a receiver on the 40 MHz (8m) band with a 5-element beam for the 50 MHz band about 6m above ground level.

40 MHz reception report from Bill Smith, W1-7897 for January 2024:

3rd Jan 2024 - EI2IP in Ireland, Grid IO52QP heard on 40.680 FT8 calling CQ from 1338 to 1356 UTC. No Answers. Signal strength ranged between -20 and -10 DB.

10th Jan 2024 - EI2IP (IO52) called CQ from 1547 UTC to 1603 UTC. Signal strength ranged from -14 to -20 DB. At 1604 UTC ZF1EJ in the Cayman Islands (EK99) called EI2IP and a QSO resulted with EI2IP at -6db and ZF1EJ at -9db. ZF1EJ then (1606 UTC) worked G9PUV who was not heard here. ZF1EJ then called CQ until 1612 without an answer.

11th Jan 2024 - ZF1EJ(EK99) logged between 1337 and 1341 UTC Calling CQ with no answers. Signal Strength -14 to -18DB.

12th Jan 2024 - ZF1EJ (EK99) called CQ from 1444 UTC to 1518 UTC on 40 MHz FT8 on Jan. 12, 2024. No one answered. Signals ranged from -21DB to +23 DB.

 


13th Jan 2024 - EI2IP (IO52) logged calling CQ between 1403 and 1411 UTC on 40.680 MHz FT8. No answers. Signal strength -4 to -18 DB.

14th Jan 2024 - EI2IP (IO52) logged between 1624 and 1638 UTC calling CQ. No answers. Signal Strength ranged from -17 DB to 3DB on 40.680 FT8.

15th Jan 2024 - ZF1EJ (EK99) called SV1DH in Greece (KM27) at 1457 UTC with no contact. SV1DH not heard here. ZF1EJ then worked G9PUV (JO00). G9PUV not heard here. ZF1EJ was -18DB.  EI2IP (IO52) called  CQ from 1610 to 1628 with  strength ranging from -20 to 2 DB. EI2IP then worked VA2CYX in Quebec, Canada (FN46). VA2CYX not heard here. EI2IP Worked S59F in Slovenia at 1639 UTC, and 9A5CW in Croatia at 1644 UTC. Unfortunately, I was not at home to shift antenna toward southern Europe so did not hear either station.

16th Jan 2024 - ZF1EJ (EK99) called CQ once at 1426 UTC. No answer. Strength -17 DB; EI2IP (IO52) called CQ at 1805-1807 with no answer; strength -17DB; LX5JX  in Luxembourg (JO30) called CQ from 1808-1811 and worked VA2CYX (FN46) at 1812. Strength -3 DB. After both calling CQ between 1813 and 1817, EI2IP and LX5JX worked at 1829 UTC. LX5JX was strength 1 DB. LX5JX called CQ until 1855 UTC with no further answers.


19th Jan 2024 - ZF1EJ (EK99) calling CQ from 1543 to 1546 UTC on 48.680 MHz FT8. No answers. Signal ranged from -7 to 19 DB.

21st Jan 2024 - EI2IP (IO52) called CQ at 1423 UTC Signal Strength -18 DB; at 1517 UTC EI4GEB (IO52) called CQ, strength -14 DB.

29th Jan 2024 - ZF1EJ (EK99) called CQ from 1823 UTC to 1827 with no answer. At 1828 called PJ4MM with no reply. PJ4MM in Bonaire (FK52) was not heard here. ZF1EJ then called CQ until 1839. No answers. ZF1EJ signal strength ranged from -14 to -18 DB. 

***

In summary... As can be seen from the map above, the path to the stations in Europe was about 5000-6000kms and was most likely two F2 layer hops. ZF1EJ in the Cayman Islands was about 2700kms to the south and was likely one F2 layer hop. VA2CYX in Quebec, Canada is about 500kms to the north and is too close for F2 layer propagation.

Thanks for the report Bill!


For more information on the 40 MHz band, go to https://ei7gl.blogspot.com/p/40-mhz.html

Wednesday, March 15, 2023

Skewed path opening on the 40 MHz band from New Zealand to England & Ireland - 13th March 2023


Monday 13th March 2023: Over the last few weeks, Paul G9PUV in the SE of England and Robbie, EI2IP in the SW of Ireland have been very active on the 40 MHz (8m) band. On the evening of the 13th of March, there was a remarkable opening when their FT8 signals were heard in New Zealand.

The map above shows the direct paths in Purple. The path from EI2IP goes over the Arctic to the west while the path from G9PUV goes east and over the far north of Russia, both highly unlikely paths at a frequency of 40 MHz.

The strange thing is that 40 MHz didn't seem to take the short path or the long path but a skewed path. A suggested path is shown above in Orange but in reality, we'll never know for sure the exact path.

Here are the reception reports from ZL1RS in New Zealand...

 Txmtr Band Mode Distance Time (UTC) SNR
WM2XEJ 8m FT8 13129 km 19:47:26 7
EI2IP 8m FT8 18096 km 19:35:14 -21
G9PUV 8m FT8 18206 km 18:54:14 -17

Note that ZL1RS was hearing the the experimental US station WM2XEJ as well at about the same time.


G9PUV: The map above shows the FT8 paths for Paul, G9PUV in the evening time. Note that there was a path also open to the Caribbean about 20 mins after the opening to New Zealand. 

These are the FT8 reports...

Txmtr Rcvr Band Mode Distance Time (UTC) SNR
G9PUV EA8/DF4UE 8m FT8 2730 km 19:18:00 -13
G9PUV EA1TX 8m FT8 1086 km 19:15:41 -15
G9PUV FG8OJ 8m FT8 6618 km 19:14:14 -11
G9PUV HC02 8m FT8 1657 km 19:14:14 -17
G9PUV HI0SDR/3 8m FT8 6983 km 19:14:00 -17
EA1TX G9PUV 8m FT8 1086 km 19:13:59 -14
G9PUV K6EU 8m FT8 8704 km 19:00:14 -21
G9PUV ZL1RS 8m FT8 18206 km 18:54:14 -17

G9PUV was using a log-periodic antenna at rooftop level and was beaming 195 degrees. The actual beam heading for New Zealand may have been some bit off this.


EI2IP: The map above shows the paths for EI2IP during the evening. Again, note that there was an opening to the Caribbean and the south-east of the USA.

Rcvr Band Mode Distance Time (UTC) SNR
FG8OJ 8m FT8 6092 km 19:52:44 -12
WW1L 8m FT8 4389 km 19:52:14 -2
K6EU 8m FT8 8152 km 19:52:12 -11
WM2XCC/JTDX 8m FT8 8244 km 19:49:58 -19
K1HTV-4 8m FT8 5390 km 19:40:45 -17
WM2XCC 8m FT8 8244 km 19:40:44 -20
PJ4MM 8m FT8 6895 km 19:39:11 -15
EA8/DF4UE 8m FT8 2676 km 19:37:00 -10
EA1TX 8m FT8 1223 km 19:36:11 -11
ZL1RS 8m FT8 18096 km 19:35:14 -21
HC02 8m FT8 1705 km 19:32:15 -11
N4WLO/3 8m FT8 6684 km 19:32:14 -17
HI0SDR/3 8m FT8 6405 km 19:32:00 -12
K5YT 8m FT8 6935 km 19:19:41 -24
HI0SDR 8m FT8 6461 km 19:06:30 -19
WM2XEJ 8m FT8 6135 km 19:06:14 -22
WP4G 8m FT8 6209 km 19:05:42 -17
N2OTO 8m FT8 6487 km 19:05:30 -8

EI2IP reports using a 4-element Yagi and was beaming at 200 degrees which is roughly pointing at South America.


WM2XEJ: It's interesting to look at the evening reports and paths for the US experimental station WM2XEJ in Georgia. You'll note that there was a path open both to ZL1RS at 19:47 UTC and to EI2IP at 19:35 UTC.

As you can see from the map above, it's not hard to imagine a situation where the path becomes skewed and then the EI to ZL path becomes possible. In that case, it's likely that the path was in the region of about 19,000kms.

Short Path or Long Path??? ...  Strictly speaking, it was probably a skewed short path for EI2IP and a skewed long path for G9PUV.  The more correct question is probably if the path was skewed or not? The more informative answer is that the path was skewed and learn from that.

Lessons: It's worth remembering that the TEP zone around the Geomagnetic Equator is likely to have a huge impact on any 40 MHz signals crossing it. I would take these points from this...

1) The date... We're in the middle of March and near the equinox.

2) The time... Roughly 18:45 to 20:00 UTC

3) Location... This applies to stations in the north of New Zealand and the NW of Europe.

4) Beam heading... Stations in New Zealand should beam at the Caribbean and stations in the UK and Ireland should beam at the South America or the Caribbean.

5) Skewed Paths.... Forget long path and short paths and direct lines on the map which can go all over the place when the other station is at the other side of the planet. 40 MHz signals are going to have a really tough time crossing over the north or south poles... look for skewed paths where the signal stays as close to the equator as possible.

6) 50 MHz... Any serious 50 MHz operators should be reading this and then trying to explore this path. If it can be done at 40 MHz then maybe 50 MHz is possible?


In conclusion: The Trans-Equatorial Propagation zone around the geomagnetic equator has a huge impact on low band VHF signals on the 40 MHz and 50 MHz bands. In the past, we only really had SSB and CW available in terms of popular modes. Now with so many stations on the one frequency using a weak signal mode like FT8, we can see signals that are buried in the noise. 

There are probably plenty of other skewed paths that are possible. The key is to get out of the fixed mindset of short path and long path and think about beaming at this TEP zone at an angle and see if a signal can propagate inside it or be bent by it.

It's likely the windows of opportunity will be short... the TEP zone ionization needs to be right and there may be sunrise or sunset peaks along the path.

It's likely that there are probably plenty more new skewed paths out there awaiting discovery.

Link... For more information on the 8m band, see my 40 MHz page.

Saturday, March 11, 2023

Opening on the 40 MHz band between California and Europe - 9th & 10th March 2023


Over the last few weeks and months, there have been a lot of excellent openings on the 40 MHz (8m) band (reports HERE). While the really long distance paths are impressive, some of the shorter East-West paths in the same hemisphere can be equally difficult.

While there have been many 40 MHz openings from the eastern half of the USA to Europe, openings to the west coast have been largely absent. There were hints though that things were getting close. 

Paul, MI3LDO in the north-west of Ireland reported hearing CHP (California Highway Patrol) stations at 39 MHz in late February 2023. In early March, Robbie EI2IP in the south-west of Ireland reported hearing SNOTEL traffic on 40.670 MHz which is usually associated with the west coast of the United States.

On the 9th and 10th of March 2023, the elusive California to Europe opening on the 40 MHz band finally happened.


Thursday 9th March 2023: Tom, K6EU near San Francisco in California reports hearing Robbie, EI2IP and Paul, G9PUV on FT8 on 40.680 MHz.

174700 -15  0.2  495 ~  CQ EI2IP IO52      EU
174730 -15  0.2  495 ~  CQ EI2IP IO52      EU
181630 -18 -0.0 1464 ~  CQ G9PUV JO00      EU
181700 -21 -0.0 1464 ~  CQ G9PUV JO00      EU
181715 -19  0.3  502 ~  CQ EI2IP IO52      EU
181730 -18 -0.0 1464 ~  CQ G9PUV JO00      EU
181745 -15  0.1  503 ~  CQ SSB EI2IP IO52  EU
181800 -17 -0.0 1464 ~  CQ G9PUV JO00      EU
181930 -19 -0.0 1464 ~  CQ G9PUV JO00  

Chris, N3IZN near Los Angeles and who is the holder of the experimental licence WM2XCC also reported decoding EI2IP and G9PUV on 40.680 MHz.

No reports were shown on the PSK Reporter website.

Friday 10th March 2023: Conditions were very good again on the 8m band and both G9PUV and EI2IP were reported on the west coast of the USA. This time, there were reports on the PSK Reporter website.

G9PUV... The reports over 8000kms for G9PUV in the SE of England are shown below while the map is shown above.

Txmtr Rcvr Band Mode Distance Time (UTC) SNR
ZS6OB G9PUV 8m FT8 8964 km 12:17:59 1
G9PUV WM2XCC/JTDX 8m FT8 8822 km 19:02:43 -19
G9PUV ZS6WN 8m FT8 8799 km 11:28:59 -8
ZS6WN G9PUV 8m FT8 8799 km 11:24:29 -7
G9PUV K6EU 8m FT8 8704 km 19:02:12 -17

While the path to South Africa is longer in some cases, it is also easier as it's north-south. The thing to note here is how far north towards the Arctic region the signal has to travel. The maximum distance to the US was to WM2XCC near Los Angeles, a distance of about 8820kms.


EI2IP... As Robbie was about 600kms further west than G9PUV, the path to California is slightly shorter and doesn't have to travel so far to the north.

Txmtr Rcvr Band Mode Distance Time (UTC) SNR
EI2IP VK4TVL 8m FT8 15766 km 09:28:15 -13
EI2IP ZS6AYE 8m FT8 9480 km 10:43:44 -13
ZS6OB EI2IP 8m FT8 9406 km 11:29:26 -4
ZS6WN EI2IP 8m FT8 9254 km 11:06:56 -15
EI2IP ZS6WN 8m FT8 9254 km 11:04:14 -9
EI2IP HC2FG 8m FT8 8942 km 18:28:30 -24
EI2IP HC1BI 8m FT8 8681 km 15:21:11 -12
EI2IP WM2XCC/JTDX 8m FT8 8244 km 18:48:13 -17
EI2IP WM2XCC 8m FT8 8244 km 18:35:44 -17
EI2IP K6EU 8m FT8 8152 km 18:46:12 -11

As you can see from the reports above, EI2IP was heard again in the north-east of Australia. I've covered previous openings from Europe to Australia in previous posts.

Where next??? The next obvious question is if there is a path from the UK and Ireland to the NW of the USA? Up in Washington state or near Vancouver in Canada?

For stations in California, is there a path further east into Europe? The OZ7IGY beacon Denmark? S5 and 9A stations in Slovenia and Croatia?

Can stations in continental Europe hear the experimental stations on the US west coast?

Links... For more information on the 8m band, see my 40 MHz page.

Monday, February 13, 2023

15,700km opening on the 40 MHz band between Ireland and Australia - 12th Feb 2023


12th February 2023: With the solar flux just above the 200 mark, some interesting paths are beginning to appear on the 40 MHz (8m) band. On the 12th of February 2023, Lloyd, VK4TVL in the north-east of Australia received the FT8 signals on 40.680 MHz from Tim, EI4GNB and Robbie, EI2IP in Ireland.

 Txmtr Band Mode Distance Time (UTC) SNR
EI2IP 8m FT8 15766 km 11:11:44 -16
EI4GNB 8m FT8 15587 km 11:00:14 -17

The signal reports of -16dB and -17dB suggest that the signals were very weak indeed and just below what is really audible to your ear. It is however stronger than what would be required for a successful FT8 contact.

Lloyd reports using an off-centre fed dipole for the 80m band up about 6-metres. No doubt with a dedicated antenna for the band, the signals would have been even stronger.

Analysis... This opening happened just after sunset in NE Australia and that no doubt was a factor in the opening. The primary mode of propagation was likely F2 with possibly some help from TEP to the north of Australia.

The distances of 15,587 kms and 15,766 kms are the longest paths that have been reported on the 40 MHz band so far for amateur radio or experimental stations. Could it go further?

The next obvious step is for someone down around Sydney & Melbourne to receive the 40 MHz DX signals. Even though it's about an additional 1000kms or so, the path is a little more southerly so the chances of success are high.


New Zealand to Europe on 40 MHz??? The problem here is that the short path and long path start getting close to the polar regions. This is especially true for stations in the UK or Ireland.

The path above shows the path from the centre of England to the north tip of New Zealand. i.e. location of ZL1RS. The path from Ireland is even worse. From the UK, the SE of England looks like the best spot i.e. G9PUV.

Perhaps a 40 MHz path from New Zealand to the OZ7IGY beacon in Denmark or the stations in Slovenia or Croatia might be more likely? The short path and long path routes certainly don't get as close to the poles.

Link: For more information on the 8m band, visit my 40 MHz page.

Thursday, February 9, 2023

Request for more reception reports on the 40 MHz band - Feb 2023

The 8th of February 2023 was another good day on the 40 MHz band with lots of reports. Both Robbie, EI2IP in Ireland and Paul, G9PUV are active almost daily on the band and their reports are shown below.

Both EI2IP and G9PUV are looking for more reception reports on 40.680 MHz. Just try listening on that frequency with FT8 and see if you can decode anything. Just make sure you have the correct frequency set on your FT8 software.

With WSJT-X, go to File - Settings - Frequencies and change one of the unused microwave bands to 40.680 000 MHz.

An antenna tuned for 28 MHz or 40 MHz should still give reasonable reports although of course, it would be best to have a dedicated antenna for the band.

Reports for the 8th of Feb 2023...


EI2IP: The map above shows the stations that heard the FT8 signals from Robbie on 40.680 MHz. Robbie writes... "The band has been on fire these last few months, and the SWL reports are extending to Mexico, Cuba, Ecuador and well into East Coast of North America."

Robbie reports that Osmany, CO2OQ  in Havana, Cuba was using a 6M Moxon antenna and an ICOM-7300 and 50 Watts. Signal reports of +4dB and -12dB were exchanged on FT8.


G9PUV: The map above for Paul shows a similar pattern with the 8m signals reaching Cuba, Mexico and Ecuador to the west.

F14700: The FT8 signal from CO2OQ was also received by SWL Jean Trenscène, F14700 in the north of France. Jean was using a SDR Play RSP1A receiver with a D3000 discone antenna.

Analysis... The signal paths that are now being reported on the 40 MHz are reminiscent of what the 50 MHz band would be like if only the solar flux and sunspot numbers were higher.

The problem in the past was that the 28 MHz band was too far away from the 50 MHz band to warn of imminent openings. Now with the 40 MHz band, 6m operators know that the maximum usable frequency is just 10 MHz below and there is some potential of an opening.

It would be good to have more stations providing reception reports on FT8 and WSPR. 40.680 MHz in the middle of the ISM band seems to have become the default frequency in terms of activity.

Both EI2IP and G9PUV are looking for more reports from Asia, Africa, South America and the western half of the USA.

Link... For more info on the 8m band, see my 40 MHz page

Heard lists... These are the stations that heard both G9PUV and EI2IP in order of distance...

Wednesday, February 8, 2023

Good conditions on the 40 MHz band - Mon 6th Feb 2023

Several stations have reported good conditions on the 40 MHz band on the 6th of February 2023.


These are the FT8 paths for Paul, G9PUV / G7PUV in the SE of England.


Robbie, EI2IP in the SW of Ireland experienced similar conditions.


Martin, PJ4MM was heard by quite a number of stations across the Atlantic on the 40 MHz band. This makes a pleasant change from just a year or two ago when the number of stations listening on the band was a lot lower.

PJ4MM writes... "Today's reports 8m, everybody thanks for the reports! All ft8 except 9a5cw

Thursday, January 19, 2023

Report for activity on the 40 MHz band - Wed 18th Jan 2023


As the map above shows, there was plenty of activity on the 40 MHz band on Wednesday the 18th of January 2023. One of the pivotal stations on the band is Martin, PJ4MM in the Caribbean. With the high MUF due to solar activity, he is ideally placed to put a good signal into the eastern part of the USA and Canada as well as into Europe.

According to PSK Reporter, PJ4MM was involved in the three longest paths reported on the 8m band on the 18th.

 Txmtr Rcvr Band Mode Distance Time (UTC)
UW8SM PJ4MM 8m FT8 9303 km 14:56:11
PJ4MM SR4DON 8m FT8 8830 km 11:55:30
G9PUV TI5N5BEK 8m FT8 8757 km 15:15:13

Reports...

Paul, G7PUV (G9PUV) in the SE of England reports... "My tally for this afternoon was heard and flagged by 12 US stations, 4 Canadians, PJ4MM and TI5N5BEK. I worked WM2XEJ, VA2CY, PJ4MM and heard WM2XAN plus had 22 F2 backscatter reports from Europe."

This short video from Paul shows reception of WB4JWM/WM2XEJ ON 40.680MHz.

Patrik, 9A5CW reports the first contact on the 40 MHz band between Croatia and Bonaire, a distance of about 8419kms.


Robbie, EI2IP reports the following... "SSB Contact Worked PJ4MM, Martin in Bonaire Island on 8M/40MHz"

and... "SSB Contact WM2XEJ, Tom in Georgia, North America on 8M/40MHz"

Miha, S51FB reports that the 8m beacon in Slovenia, S55ZMS/B was heard by Tim, WW1L in the state of Maine in the USA (FN54).

***

DX Cluster reports are at the bottom of this post.

All reports... All of the 40 MHz paths are shown below. I have removed BG0GE who was almost certainly reporting the wrong band. The WESSEXSDR seems to generate a good few bogus spots as well and I have marked these and other suspect ones with a question mark.

Txmtr Rcvr Band Mode Distance Time (UTC)